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Introduction

0.1 On the Subject

Derived categories were introduced by A. Grothendieck and J.-L. Verdier

around 1960 and were first published in the book [62] by R. Hartshorne.

The basic idea was as follows. They had realized that the derived functors

of classical homological algebra, namely the functors RqF, LqF : M → N

derived from an additive functor F : M → N between abelian categories, are

too limited to allow several rather natural manipulations. Perhaps the most

important operation that was lacking was the composition of derived functors;

the best approximation of it was a spectral sequence.

The solution to the problem was to invent a new category, starting from a

given abelian category M. The objects of this new category are the complexes

of objects of M. These are the same complexes that play an auxiliary role in

classical homological algebra, as resolutions of objects of M. The complexes

form a category C(M), but this category is not sufficiently intricate to carry in

it the information of derived functors. So it must be modified.

A morphism φ : M → N in C(M) is called a quasi-isomorphism if in

each degree q the cohomology morphism Hq (φ) : Hq (M) → Hq (N ) in M

is an isomorphism. The modification that is needed is to make the quasi-

isomorphisms invertible. This is done by a formal localization procedure,

and the resulting category (with the same objects as C(M)) is the derived

category D(M). There is a functor Q : C(M) → D(M), which is the identity

on objects, and it has a universal property (it is initial among the functors that
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2 Introduction

send the quasi-isomorphisms to isomorphisms). A theorem (analogous to Ore

localization in noncommutative ring theory) says that every morphism θ in

D(M) can be written as a simple left or right fraction:

θ = Q(ψ0)−1 ◦ Q(φ0) = Q(φ1) ◦ Q(ψ1)−1, (0.1.1)

where φi and ψi are morphisms in C(M) and ψi are quasi-isomorphisms.

The cohomology functors Hq : D(M) → M, for all q ∈ �, are still defined.

It turns out that the functorM→ D(M), which sends an object M to the complex

M concentrated in degree 0, is fully faithful.

The next step is to say what is a left or a right derived functor of an additive

functor F : M → N. The functor F can be extended in an obvious manner to

a functor on complexes F : C(M) → C(N). A right derived functor of F is a

functor

RF : D(M) → D(N), (0.1.2)

together with a morphism of functors ηR : QN ◦ F → RF ◦ QM. The pair

(RF, ηR) has to be initial among all such pairs. The uniqueness of such a functor

RF, up to a unique isomorphism, is relatively easy to prove (using the language

of 2-categories). As for existence of RF, it relies on the existence of suitable

resolutions (similar to the injective resolutions in the classical situation). If

these resolutions exist, and if the original functor F is left exact, then there is a

canonical isomorphism of functors

RqF � Hq ◦RF : M→ N (0.1.3)

for every q ≥ 0.

The left derived functor

LF : D(M) → D(N) (0.1.4)

is defined similarly. When suitable resolutions exist, and when F is right exact,

there is a canonical isomorphism of functors

LqF � H−q ◦LF : M→ N (0.1.5)

for every q ≥ 0.

There are several variations: F could be a contravariant additive functor, or

it could be an additive bifunctor, contravariant in one or two of its arguments.

In all these situations the derived (bi)functors RF and LF can be defined.

The derived category D(M) is additive, but it is not abelian. The notion of

short exact sequence (in M and in C(M)) is replaced by that of distinguished

triangle, and thus D(M) is a triangulated category. The derived functors RF

and LF are triangulated functors, which means that they send distinguished

triangles in D(M) to distinguished triangles in D(N).
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0.1 On the Subject 3

Already in classical homological algebra, we are interested in the bifunctors

Hom(−,−) and (− ⊗ −). These bifunctors can also be derived. To simplify

matters, let’s assume that A is a commutative ring and M = N = Mod A, the

category of A-modules. We then have bifunctors

HomA(−,−) : (Mod A)op × Mod A → Mod A

and

(− ⊗A −) : Mod A × Mod A → Mod A ,

where the superscript “op” denotes the opposite category, which encodes the

contravariance in the first argument of Hom. In this situation, all resolutions

exist, and we have the right derived bifunctor

RHomA(−,−) : D(Mod A)op × D(Mod A) → D(Mod A) (0.1.6)

and the left derived bifunctor

(− ⊗L
A −) : D(Mod A) × D(Mod A) → D(Mod A) . (0.1.7)

The compatibility with the classical derived bifunctors is this: there are canon-

ical isomorphisms

Ext
q

A
(M, N ) � Hq (RHomA(M, N )

)

(0.1.8)

and

TorAq (M, N ) � H−q (M ⊗L
A N ) (0.1.9)

for all M, N ∈ Mod A and q ≥ 0.

This is what derived categories and derived functors are. As to what can

be done with them, here are some of the things we will explore in this book:

• Dualizing complexes and residue complexes over noetherian commuta-

tive rings. Besides the original treatment from [62], which we present in

detail here, we also include Van den Bergh rigidity in the commutative

setting, which gives rise to rigid residue complexes.

• Perfect DG modules and tilting DG bimodules over noncommutative

DG rings, and a few variants of derived Morita Theory, including the

Rickard–Keller Theorem.

• Derived torsion and balanced dualizing complexes over connected graded

NC rings, and rigid dualizing complexes over NC rings, including a full

proof of the Van den Bergh Existence Theorem for NC rigid dualizing

complexes.

A topic that is beyond the scope of this book, but of which we provide an

outline here, is

• The rigid approach to Grothendieck Duality on noetherian schemes and

Deligne–Mumford stacks.
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4 Introduction

Derived categories have important roles in several areas of mathematics;

below is a partial list. We will not be able to talk about any of these topics in

this book, so instead we give some references alongside each topic.

⊲ D-modules, perverse sheaves and representations of algebraic groups and

Lie algebras. See [16] and [27]. More recently, the focus in this area is

on the Geometric Langlands Correspondence, which can only be stated

in terms of derived categories (see the survey [50]).

⊲ Algebraic analysis, including differential, microdifferential and DQ mod-

ules (see [74], [134], [77]) and microlocal sheaf theory (see [75]), with

its application to symplectic topology (see [149], [110]).

⊲ Representations of finite groups and quivers, including cluster algebras

and the Broué Conjecture. See [59], [84], [43].

⊲ Birational algebraic geometry. This includes Fourier–Mukai transforms

and semi-orthogonal decompositions. See the surveys [64] and [103],

and the book [70].

⊲ Homological mirror symmetry. It relates the derived category of co-

herent sheaves on a complex algebraic variety X to the derived Fukaya

category of the mirror partner Y , which is a symplectic manifold. See

Remark 3.8.22 and the online reference [88].

⊲ Derived algebraic geometry. Here not only is the category of sheaves

derived but also the underlying geometric objects (schemes or stacks).

See Example 6.2.35, Remark 6.2.38 and the references [99] and [152].

0.2 A Motivating Discussion: Duality

Let us now approach derived categories from another perspective, very different

from the one taken in the previous section, by considering the idea of duality

in algebra.

We begin with something elementary: linear algebra. Take a field �.

Given a �-module M (i.e. a vector space), let D(M) := Hom�(M,�), the

dual module. There is a canonical homomorphism

evM : M → D(D(M)), (0.2.1)

called Hom-evaluation, whose formula is evM (m)(φ) := φ(m) for m ∈ M and

φ ∈ D(M). If M is finitely generated, then evM is an isomorphism (actually

this is “if and only if”).

To formalize this situation, let Mod� denote the category of �-modules.

Then D : Mod�→ Mod� is a contravariant functor, and ev : Id→ D ◦ D is
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0.2 A Motivating Discussion: Duality 5

a morphism of functors (i.e. a natural transformation). Here Id is the identity

functor of Mod�.

Now let us replace� by some nonzero commutative ring A. Again we can

define a contravariant functor

D : Mod A→ Mod A, D(M) := HomA(M, A), (0.2.2)

and a morphism of functors ev : Id→ D ◦ D. It is easy to see that evM : M →

D(D(M)) is an isomorphism if M is a finitely generated free A-module. Of

course, we can’t expect reflexivity (i.e. evM being an isomorphism) if M is not

finitely generated, but what about a finitely generated module that is not free?

In order to understand this better, let us concentrate on the ring A = �.

Since �-modules are just abelian groups, the categoryMod� is often denoted

by Ab. Let Abf be the full subcategory of finitely generated abelian groups.

Every finitely generated abelian group is of the form M � T ⊕ F, with T

finite and F free. (The letters “T” and “F” stand for “torsion” and “free,”

respectively.) It is important to note that this is not a canonical isomorphism.

There is a canonical short exact sequence

0→ T
φ
−→ M

ψ
−→ F → 0 (0.2.3)

in Abf , but the decomposition M � T ⊕ F comes from choosing a splitting

σ : F → M of this sequence.

Exercise 0.2.4 Prove that the exact sequence (0.2.3) is functorial, namely that

there are functors T, F : Abf → Abf , and natural transformations φ : T → Id

and ψ : Id → F, such that for each M ∈ Abf the group T (M) is finite, the

group F (M) is free and the sequence of homomorphisms

0→ T (M)
φM

−−−→ M
ψM

−−−→ F (M) → 0 (0.2.5)

is exact.

Next, prove that there does not exist a functorial decomposition of a finitely

generated abelian group into a free part and a finite part. Namely, there is no

natural transformation σ : F → Id, such that for every M the homomorphism

σM : F (M) → M splits the sequence (0.2.5). (Hint: find a counterexample.)

We know that for a free finitely generated abelian group F, there is reflex-

ivity, i.e. evF : F → D(D(F)) is an isomorphism. But for a finite abelian

group T we have D(T ) = Hom�(T,�) = 0. Thus, for a group M ∈ Abf with a

nonzero torsion subgroup T , reflexivity fails: evM : M → D(D(M)) is not an

isomorphism.

On the other hand, for an abelian group M we can define another sort of

dual: D′(M) := Hom�(M,�/�). There is a morphism of functors ev′ : Id→
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6 Introduction

D′◦D′. For a finite abelian group T the homomorphism ev′
T

: T → D′(D′(T ))

is an isomorphism; this can be seen by decomposing T into cyclic groups, and

for a finite cyclic group it is clear. So D′ is a duality for finite abelian groups.

(We may view the abelian group �/� as the group of roots of 1 in �, via the

exponential function; then D′ becomes Pontryagin Duality.)

But for a finitely generated free abelian group F we get D′(D′(F)) = F̂,

the profinite completion of F. So once more, this is not a good duality for all

finitely generated abelian groups.

This is where the derived category enters. For every commutative ring A,

there is the derived category D(Mod A). Here is a very quick explanation of

it, in concrete terms – as opposed to the abstract point of view taken in the

previous section.

Recall that a complex of A-modules is a diagram

M =
(

· · · → M−1
d−1
M

−−−→ M0
d0
M

−−−→ M1 → · · ·
)

(0.2.6)

in the category Mod A. Namely the M i are A-modules, and the di
M

are ho-

momorphisms. The condition is that di+1
M
◦ di

M
= 0. We sometimes write

M = {M i }i∈�. The collection dM = {d
i
M
}i∈� is called the differential of M .

Given a second complex

N =
(

· · · → N−1
d−1
N

−−→ N0
d0
N

−−→ N1 → · · ·
)

,

a homomorphism of complexes φ : M → N is a collection φ = {φi }i∈� of

homomorphisms φi : M i → N i inMod A satisfying φi+1 ◦ di
M
= di

N
◦ φi . The

resulting category is denoted by C(Mod A).

The ith cohomology of the complex M is

Hi (M ) := Ker(diM ) / Im(di−1
M ) ∈ Mod A. (0.2.7)

A homomorphism φ : M → N in C(Mod A) induces homomorphisms Hi (φ) :

Hi (M ) → Hi (N ) in Mod A. We call φ a quasi-isomorphism if all the homo-

morphisms Hi (φ) are isomorphisms.

The derived category D(Mod A) is the localization of C(Mod A) with re-

spect to the quasi-isomorphisms. This means that D(Mod A) has the same

objects as C(Mod A). There is a functor

Q : C(Mod A) → D(Mod A), (0.2.8)

which is the identity on objects it sends quasi-isomorphisms to isomorphisms,

and it is universal for this property.

A single A-module M0 can be viewed as a complex M concentrated in

degree 0:

M =
(

· · · → 0
0
−→ M0 0

−→ 0→ · · ·
)

.
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0.2 A Motivating Discussion: Duality 7

This turns out to be a fully faithful embedding

Mod A→ D(Mod A). (0.2.9)

The essential image of this embedding is the full subcategory of D(Mod A)

on the complexes M whose cohomology is concentrated in degree 0. In this

way we have enlarged the category of A-modules. All this is explained in

Chapters 6 and 7 of the book.

Here is a very important kind of quasi-isomorphism. Suppose M is an

A-module and

· · · → P−2
d−2
P

−−→ P−1
d−1
P

−−→ P0 ρ
−→ M → 0 (0.2.10)

is a projective resolution of it. We can view M as a complex concentrated in

degree 0, by the embedding (0.2.9). Define the complex

P :=
(

· · · → P−2
d−2
P

−−→ P−1
d−1
P

−−→ P0 → 0→ · · ·
)

, (0.2.11)

concentrated in nonpositive degrees. Then ρ becomes a morphism of com-

plexes ρ : P → M . The exactness of the sequence (0.2.10) says that ρ is

actually a quasi-isomorphism. Thus Q(ρ) : P → M is an isomorphism in

D(Mod A).

Let us fix a complex R ∈ C(Mod A). For every complex M ∈ C(Mod A)

we can form the complex

D(M) := HomA(M, R) ∈ C(Mod A).

This is the usual Hom complex (we recall it in Section 3.6). As M changes, we

get a contravariant functor

D : C(Mod A) → C(Mod A).

The functor D has a contravariant right derived functor

RD : D(Mod A) → D(Mod A). (0.2.12)

If P is a bounded above complex of projective modules (as in formula (0.2.11)),

or more generally a K-projective complex (see Section 10.2), then there is a

canonical isomorphism

RD(P) � D(P) = HomA(P, R). (0.2.13)

Every complex M admits a K-projective resolution ρ : P → M , and this allows

us to calculate RD(M). Indeed, because the morphism Q(ρ) : P → M is

an isomorphism in D(Mod A), it follows that RD(Q(ρ)) : RD(M) → RD(P)

is an isomorphism in D(Mod A). And the complex RD(P) is known by the

canonical isomorphism (0.2.13). All this is explained in Chapters 8, 10 and 11

of the book.

It turns out that there is a canonical morphism

evR : Id→ RD ◦ RD (0.2.14)
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8 Introduction

of functors from D(Mod A) to itself, called derived Hom-evaluation. See

Section 13.1.

Let us now return to the ring A = � and the complex R = �. So the

functor D is the same one we had in (0.2.2). Given a finitely generated abelian

group M , we want to calculate the complexes RD(M) and RD(RD(M)) and

the morphism

evR
M : M → RD(RD(M)) (0.2.15)

in D(Mod A). As explained above, for this we choose a projective resolution

ρ : P → M , and then we calculate the complexes RD(P) and RD(RD(P))

and the morphism evR
P

. For convenience we choose a projective resolution P

of the shape

P =
(

· · · → 0→ P−1
d−1
P

−−→ P0 → 0→ · · ·
)

=

(

· · · → 0 −→ �r1
a · (−)
−−−−→ �r0 −→ 0 · · ·

)

,

where r0, r1 ∈ � and a is a matrix of integers. The complex RD(P) is this:

RD(P) � D(P) = Hom�(P,�) =
(

· · · → 0 −→ �r0
a

t · (−)
−−−−−→ �r1 −→ 0 · · ·

)

,

a complex of free modules concentrated in degrees 0 and 1, with the transpose

matrix a
t as its differential. (We are deliberately ignoring signs here; the correct

signs are shown in formulas (3.6.4) and (13.1.15).)

Because RD(P) � D(P) is itself a bounded complex of free modules, its

derived dual is

RD(RD(P)) � D(D(P)) = Hom�
(

Hom�(P,�),�
)

. (0.2.16)

Under the isomorphism (0.2.16), the derived Hom-evaluation morphism evR
P

in

this case is just the naive Hom-evaluation homomorphism evP : P → D(D(P))

in C(Mod�) from (0.2.1); see Exercise 13.1.17. Because P0 and P−1 are

finite rank free modules, it follows that evP is an isomorphism in C(Mod�).

Therefore the morphism evR
M

in D(Mod�) is an isomorphism. We see that

RD is a duality that holds for all finitely generated �-modules M!

Actually, much more is true. Let us denote by Df (Mod�) the full subcat-

egory of D(Mod�) on the complexes M such that Hi (M) is finitely generated

for all i. Then, according to Theorem 13.1.18, evR
M

is an isomorphism for every

M ∈ Df (Mod�). It follows that

RD : Df (Mod�) → Df (Mod�) (0.2.17)

is a duality (a contravariant equivalence). This is the celebrated Grothendieck

Duality.

Here is the connection between the derived duality RD and the classical

dualities D and D′. Take a finitely generated abelian group M , with short exact
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sequence (0.2.3). There are canonical isomorphisms

H0(RD(M)) � Ext0�(M,�) � Hom�(M,�) � Hom�(F,�) = D(F)

and

H1(RD(M)) � Ext1�(M,�) � Ext1�(T,�) � D′(T ).

The cohomologies Hi (RD(M)) vanish for i , 0, 1. We see that if M is neither

free nor finite, then H0(RD(M)) and H1(RD(M)) are both nonzero, so that the

complex RD(M) is not isomorphic in D(Mod�) to an object ofMod�, under

the embedding (0.2.9).

Grothendieck Duality holds for many noetherian commutative rings A.

A sufficient condition is that A is a finitely generated ring over a regular

noetherian ring� (e.g.� = � or a field). A complex R ∈ D(Mod A) for which

the contravariant functor

RD = RHomA(−, R) : Df (Mod A) → Df (Mod A) (0.2.18)

is an equivalence is called a dualizing complex. (This is not quite accurate –

see Definition 13.1.9 for the precise technical conditions on R.) A dualizing

complex R over A is unique (up to a degree translation and tensoring with an

invertible module). See Theorems 13.1.18, 13.1.34 and 13.1.35.

Interestingly, the structure of the dualizing complex R depends on the

geometry of the ring A (i.e. of the affine scheme Spec(A)). If A is a regular

ring (like �) then R = A is dualizing. If A is a Cohen–Macaulay ring (and

Spec(A) is connected), then R is a single A-module (up to a shift in degrees).

But if A is a more singular ring, then R must live in several degrees, as the next

example shows.

Example 0.2.19 Consider the affine algebraic variety X ⊆ A3
�

, which is the

union of a plane and a line that meet at a point, with coordinate ring

A = �[t1, t2, t3]/(t3 ·t1, t3 ·t2).

See Figure 1. A dualizing complex R over A must live in two adjacent degrees;

namely there is some i such that both Hi (R) and Hi+1(R) are nonzero. This

calculation is worked out in full in Example 13.3.12.

One can also talk about dualizing complexes over noncommutative rings.

We will do this in Chapters 17 and 18.

0.3 On the Book

This book develops the theory of derived categories, starting from the founda-

tions, and going all the way to applications in commutative and noncommutative
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X

Figure 1. An algebraic variety X that is connected but not equidimensional,

and hence not Cohen–Macaulay.

algebra. The emphasis is on explicit constructions (with examples), as opposed

to axiomatics. The most abstract concept we use is probably that of an abelian

category (which seems indispensable).

A special feature of this book is that most of the theory deals with the

category C(A,M) of DG A-modules in M, where A is a DG ring and M is an

abelian category. Here “DG” is short for “differential graded,” and our DG rings

are more commonly known as unital associative DG algebras. See Sections 3.3

and 3.8 for the definitions. The notionC(A,M) covers most important examples

that arise in algebra and geometry:

• The category C(A) of DG A-modules, for any DG ring A. This includes

unbounded complexes of modules over an ordinary ring A.

• The category C(M) of unbounded complexes in any abelian categoryM.

This includes M = ModA, the category of sheaves of A-modules on a

ringed space (X,A).

The category C(A,M) is a DG category, and its DG structure determines

the homotopy category K(A,M) with its triangulated structure. We prove that

every DG functor F : C(A,M) → C(B,N) induces a triangulated functor

F : K(A,M) → K(B,N) (0.3.1)

between the homotopy categories.

We can now reveal that in the previous sections we were a bit imprecise

(for the sake of simplifying the exposition): what we referred to there as C(M)

was actually the strict subcategory Cstr(M), whose morphisms are the degree 0

cocycles in the DG category C(M). For the same reason the homotopy category

K(M) was suppressed there.
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