Contents

Preface page xi
List of Abbreviations xiv

Part I Introduction

1 Introduction: Tectonic and Stratigraphic Framework 2
1.1 General Setting 2
1.2 Structural Framework 3
 1.2.1 Deep Crustal Types 3
 1.2.2 Seismic Refraction Studies of Deep Crust 4
 1.2.3 Seismic Reflection Studies of Deep Crust 6
 1.2.4 Magnetic Data 6
 1.2.5 Gravity Data 7
1.3 Gravity Tectonics 7
 1.3.1 Growth Fault Families and Related Structures 8
 1.3.2 Basin-Floor Contractional Fold Belts 8
 1.3.3 Allochthonous Salt Bodies, Including Salt Canopies and Salt Sheets 8
 1.3.4 Roho Fault Families 8
 1.3.5 Salt Diapirs and Their Related Withdrawal Synclines and Minibasins 9
 1.3.6 Salt Welds 9
 1.3.7 Rollovers and Expulsion Rollovers 10
 1.3.8 Carapaces and Rafts 10
Box 1.1 Stratigraphic Surprises Caused by Salt Tectonics 11
1.4 Structural Domains 12
 1.4.1 Basement Structural Province 12
 1.4.2 Gravity Tectonic Domains 12
 1.4.2.1 Supracanopy Tectonic Domains 14
 1.4.2.2 Subcanopy Tectonic Domains 14
1.5 Basin-Scale Cross-Sections 15
 1.5.1 Cross-Section 1: Sigsbee Abyssal Plain to Peninsular Arch 15
 1.5.2 Cross-Section 2: Florida Shoreline to USA–Mexico International Border 17
 1.5.3 Cross-Section 3: Onshore Texas to Onshore Florida 19
 1.5.4 Cross-Section 4: Black Warrior Basin to Yucatán Channel 21
 1.5.5 Cross-Section 5: Sabine Uplift to Sigsbee Escarpment 21
 1.5.6 Cross-Section 6: San Marcos Arch to Sigsbee Escarpment 24
 1.5.7 Cross-Section 7: Quetzalcoatl Extensional Detachment, Northern Mexican Ridges to Chicxulub Crater 24
 1.5.8 Cross-Section 8: Mexican Ridges to US Abyssal Plain 27
 1.5.9 Cross-Section 9: Catemaco Fold Belt to Bahamas Platform 29
 1.5.10 Cross-Section 10: US Abyssal Plain to South Florida Basin 29
 1.5.11 Other Areas: Bravo Trough of Mexico 32
1.6 Temporal Reconstruction of Central GoM Line 32
1.7 Tectonostratigraphy, Chronostratigraphy, and Depositional Systems 32
1.8 Tectonostratigraphic Framework 32
1.9 Stratigraphic Terminology 34
1.10 Mesozoic Chronostratigraphy, Northern GoM 35
1.11 Mesozoic Chronostratigraphy, Southern GoM 36
Box 1.2 Detrital Zircon Analysis: Advanced Provenance Analysis 38
1.12 Cenozoic Chronostratigraphy, Northern GoM 41
1.13 Cenozoic Chronostratigraphy, Southern GoM 41
1.14 Stratigraphic Framework of Cuba 43
 1.14.1 Cuban Mesozoic Stratigraphic Framework 43
 1.14.2 Cuban Cenozoic Stratigraphic Framework 43
1.15 Depositional Systems Classification 44
1.16 Update to Carbonate Depositional Systems in the GoM Basin 44
1.17 Update to Siliciclastic Systems in the GoM Basin 47
Box 1.3 Submarine Fans, Ramps, and Aprons 48
1.18 Explanation of Paleogeographic Maps: Assumptions and Caveats 51
1.19 Database 51
Contents

Part II Mesozoic Depositional Evolution

2 Post-Orogenic Successor Basin-Fill and Rifting Phase 54
 2.1 Basin and Continental Framework 54
 2.2 Plate Tectonic Reconstructions since 240 Ma 54
 2.3 Tectonostratigraphic Models for Basin Precursor History 57
 2.3.1 The Conventional GoM Early Mesozoic Rift Model 58
 2.3.2 Alternative Model for Early Mesozoic Successor Basin-Fill and Rifting 59
 2.3.3 Pre-salt (Eagle Mills) Sediment Routing 63
 2.4 Previous Work 68
 2.5 Chronostratigraphy 69
 2.6 Summary 75

3 Middle Mesozoic Drift and Cooling Phase 65
 3.1 Basin and Continental Framework 65
 3.2 Louann Salt Supersequence 65
 3.2.1 Chronostratigraphy 66
 3.2.2 Previous Work 68
 3.2.3 Louann Salt Supersequence Paleogeographic Reconstruction 69
 3.2.3.1 Plate Tectonic Reconstructions for Original Salt Distribution 69
 3.2.4 Louann Salt Seismic Facies 70
 3.2.4.1 Louann Anhydrite Lithofacies 70
 3.2.4.2 Halite Lithofacies 73
 3.2.4.3 Mixed Halite–Anhydrite Lithofacies 73
 3.2.4.4 Summary 75
 3.3 Smackover–Norphlet Supersequence 75
 3.3.1 Chronostratigraphy 75
 3.3.2 Previous Work 77
 3.3.3 Plate Tectonic Reconstruction 77
 3.3.4 Restoration for Raft Tectonics 78
 3.3.5 Norphlet Depostemns: A Look into Ancient Dryland Deposition 80
 3.3.5.1 Eolian Erg 80
 3.3.5.2 Eolian–Erg Margin 80
 3.3.5.3 Fluvial Wadi 81
 3.3.5.4 Coastal Sand-Sheet/Sabkha 81
 3.3.5.5 Lake 82
 3.3.5.6 Eolian Fore-Erg 82
 3.3.6 Norphlet Paleogeographic Reconstruction 83
 3.3.7 Paleo-wind Interpretation 83
 3.3.8 Smackover Paleogeographic Reconstruction 86
 3.4 Haynesville–Buckner Supersequence 87
 3.4.1 Chronostratigraphy 89
 3.4.2 Previous Work 89
 Box 3.1 What is Reef Blocking? Limits on Sandstone Entry into the Deep Basin 91
 3.4.3 Haynesville–Buckner Paleogeographic Reconstruction 92

4 Late Mesozoic Local Tectonic and Crustal Heating Phase 101
 4.1 Basin and Continental Framework 101
 4.2 Sligo–Hosston Supersequence 101
 4.2.1 Chronostratigraphy 101
 4.2.2 Previous Work 103
 4.2.3 Hosston Sequence Set 105
 4.2.4 Hosston Sequence Set Paleogeographic Map Reconstruction 105
 4.2.5 Provenance of the Hosston Sequence Set 106
 Box 4.1 What are Source-to-Sink Analyses and Empirical Scaling Relationships? 107
 4.2.6 Hosston Source-to-Sink Predictive Scaling Relationships 109
 4.2.7 Sligo Sequence Set Paleogeographic Map Reconstruction 110
 4.3 Bexar–Pine Island Supersequence 112
 Box 4.2 What Are Oceanic Anoxic Events? 113
 4.3.1 Chronostratigraphy 115
 4.3.2 Previous Work 115
 4.3.3 Paleogeographic Map Discussion 115
 4.4 Rodessa Supersequence 116
 4.4.1 Chronostratigraphy 116
 4.4.2 Previous Work 116
 4.4.3 Paleogeographic Map Reconstruction 116
 4.5 The Glen Rose Supersequence 116
 4.5.1 Chronostratigraphy 117
 4.5.2 Previous Work 117
 4.5.3 Paleogeographic Map Reconstruction 118
 4.6 Paluxy–Washita Supersequence 122
 4.6.1 Chronostratigraphy 123
 4.6.2 Previous Work 123
 4.6.3 Paleogeographic Map Reconstruction 125
 4.7 Summary of Post-Oxfordian Mesozoic Deposition 125
 4.8 Eagle Ford–Tuscaloosa Supersequence 126
 4.8.1 Chronostratigraphy 126
 4.8.2 Previous Work 128
 4.8.3 Paleogeographic Reconstruction 128
4.9 Austin Chalk Supersequence 134
 4.9.1 Chronostratigraphy 134
 4.9.2 Previous Work 136
 4.9.3 Paleogeographic Map Reconstruction 137
4.10 Navarro–Taylor Supersequence 139
 4.10.1 Chronostratigraphy 139
 4.10.2 Previous Work 139
 4.10.3 Paleogeographic Map Reconstruction 140
4.11 Cretaceous–Paleogene (K–Pg) Boundary Unit 143
Box 4.3 The Chicxulub Impact Event: A History of Scientific Research 143
 4.11.1 Chronostratigraphy 147
 4.11.2 Previous Work 147
 4.11.3 Impact-Related Processes and Products 147
 4.11.4 Observations of the K–Pg Boundary Deposit around the GoM 150
 4.11.5 Seismic-Based K–Pg Unit Thickness Map 153
 4.11.6 K–Pg Boundary Deposit in Mexico 155
 4.11.7 K–Pg Boundary Deposit in Cuba 158
 4.11.8 Landscape and Seascapes at the End of the Mesozoic 160
4.12 Middle and Late Mesozoic Summary 160

Part III Cenozoic Depositional Evolution

5 Cenozoic Depositional History 1: Paleogene Laramide Phase 166
 5.1 Cenozoic Introduction and Overview 166
 5.1.1 Foundations of Modern Understanding of Gulf Basin Depositional History 166
 5.1.2 Cenozoic Basin Framework and Tectonostratigraphic Phases 166
 5.2 Paleogene Laramide
 Tectonostratigraphic Phase 167
 5.2.1 Chronostratigraphy and Depositional Episodes 167
 5.2.2 Previous Work 169
 5.3 Middle Paleocene Lower Wilcox Deposode 169
 5.3.1 Paleogeography 170
 Box 5.1 Shelf Edge Recognition Criteria 174
 5.3.2 Termination and Summary 177
 5.4 Late Paleocene Middle Wilcox Supersequence 178
 5.4.1 Paleogeography 178
 5.4.2 Termination and Summary 178
 5.5 Early Eocene Upper Wilcox Deposode 180
 5.5.1 Paleogeography 180
 Box 5.2 Stratigraphic and Facies Architectures of a Prograding Northern Gulf Basin Continental Platform and Margin 182
 5.5.2 Termination and Summary 184
 5.5.3 Wilcox Paleoeceanography 184

6 Cenozoic Depositional History 2: Middle Cenozoic Geothermal Phase 191
 6.1 Basin and Continental Framework 191
 6.2 Chronostratigraphy and Depositional Episodes 192
 6.3 Previous Work 193
 6.4 Late Eocene Yegua and Jackson Deposodes 193
 6.4.1 Paleogeography 193
 6.4.2 Termination and Summary 195
 6.5 Oligocene Frio Deposode 195
 6.5.1 Paleogeography 197
 Box 6.1 Growth Faults and Interdeltaic Depositional Systems Tracts 199
 6.5.2 Termination and Summary 202
 6.6 Early Miocene LM1 and LM2 Deposodes 202
 6.6.1 Paleogeography 202
 6.6.2 Termination and Summary 206
 6.7 Structural Evolution 206
 6.7.1 North-Northwestern Gulf 207
 6.7.1.1 Late Eocene 207
 6.7.1.2 Oligocene 208
 6.7.1.3 Early Miocene 209
 6.7.2 Southwestern Gulf 209
 6.8 Summary: Middle Cenozoic Phase 210

7 Cenozoic Depositional History 3: Neogene Tectono-climatic Phase 211
 7.1 Basin and Continental Framework 211
 7.2 Chronostratigraphy and Depositional Episodes 212
 7.3 Previous Work 213
 7.4 Middle Miocene Deposode 214
 7.4.1 Paleogeography 215
 7.4.2 Termination and Summary 216
 7.5 Late Miocene Supersequence 216
 7.5.1 Paleogeography 216
 7.5.2 Termination and Summary 218
 7.6 Pliocene Deposodes 220
 7.6.1 Paleogeography 220
 7.6.2 Termination 225
 7.7 Pleistocene Supersequence 225
 7.7.1 Paleogeography 225
 7.7.2 Termination and Summary 225
Table of Contents

Contents

7.8 Structural Evolution 227
 7.8.1 Northern Gulf: Burgos Basin 227
 7.8.2 Tampico–Misantla Margin 228
 7.8.3 Veracruz–Campeche Margin 228
7.9 Summary: Neogene Tectono-climatic Phase 229
8 Cenozoic Depositional Synthesis and Emerging Hydrocarbon Plays 231
 8.1 Evolving Drainage Basins and Depocenters 231
 8.1.1 Source Areas 231
 8.1.2 Drainage Basin Reconstructions 234
 8.1.2.1 Paleocene–Middle Eocene 235
 8.1.2.2 Late Eocene–Early Miocene 238
 8.1.2.3 Middle Miocene–Pleistocene 240
 8.1.3 Fluvial–Deltaic Axes 244
 8.2 Growth of the Continental Margins 244
 8.3 Continental Slope and Basin Evolution 245

Part IV Petroleum Habitat
9 GoM Petroleum Habitat 248
 9.1 Background 248
 9.2 Gulf of Mexico Undiscovered Resources 248
 9.3 Spatial Distribution of Current GoM Discoveries 249
 9.4 Synopsis of Current GoM Exploration Plays 250
 9.5 Pre-salt Petroleum Habitat 250
 9.6 Smackover–Norphlet Supersequence 251
 9.6.1 Oxfordian Source Rocks 254
 Box 9.1 Source Rock Mapping 254
 9.7 Haynesville–Buckner Supersequence 256
 9.8 Cotton Valley–Bossier Supersequence 258
 9.8.1 Jurassic Petroleum Systems and Source Rocks 259
 Box 9.2 Δ (Delta) Log R Technique 259
 9.9 Cotton Valley–Knowles Supersequence 262
 9.10 Sligo–Hosston Supersequence 262
 9.11 Bexar–Pine Island Supersequence 263
 9.12 Rodessa Supersequence 265
 9.13 Glen Rose Supersequence 265
 9.14 Paluxy–Washita Supersequence 265
 9.15 Eagle Ford–Tuscaloosa Supersequence 266
 9.15.1 Eagle Ford and Tuscaloosa Marine Shale Source Rocks 267
 9.16 Austin Chalk Supersequence 269
 9.17 Navarro–Taylor Supersequence 271
 9.18 K–Pg Boundary Deposits 272
 9.19 Implications for Mesozoic Exploration 273
 9.20 Synopsis of Cenozoic Petroleum Habitat 274
 9.20.1 Common Geologic Attributes 274
 9.21 Petroleum Habitat of the Laramide Phase Supercycles 276
 9.21.1 Wilcox Supercycles 276
 Box 9.3 Deepwater Exploration in the GoM and Significance of the BAHA Wells 278
 9.21.2 Potential Wilcox Play Expansion 281
 9.22 Petroleum Plays of the Middle Cenozoic Geothermal Phase Supersequences 281
 9.22.1 Yegua and Jackson Supercycles 281
 9.22.2 Frio Supercycle 282
 9.22.3 Lower Miocene Supercycles 283
 9.22.4 Potential Fairway Expansions 284
 9.23 Petroleum Plays of the Neogene Tectono-climatic Phase Supersequences 284
 9.23.1 Middle and Upper Miocene Supersequences 285
 9.23.2 Plio-Pleistocene Supersequences 286
 Box 9.4 Impacts of Large Mass Transport Complexes on Petroleum Systems 287
 9.24 Implications for Cenozoic Exploration 288
 9.24.1 Northern Gulf 288
 9.24.2 Western and Southwestern Gulf 289
 9.25 Seismic Technology Evolution in the GoM 289

Glossary 292
References 297
Index 324