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Foundations of Probability Theory

For centuries, mankind lived with the idea that uncertainty was the domain of

the gods and fell beyond the reach of human calculation. Common gambling

led to the first steps toward understanding probability theory, and the colorful

Italian mathematician and physician Gerolamo Cardano (1501–1575) was the

first to attempt a systematic study of the calculus of probabilities. As an ardent

gambler himself, Cardano wrote a handbook for fellow gamblers entitled Liber

de Ludo Aleae (The Book of Games of Chance) about probabilities in games

of chance like dice. He originated and introduced the concept of the set of

outcomes of an experiment, and for cases in which all outcomes are equally

probable, he defined the probability of any one event occurring as the ratio of

the number of favorable outcomes to the total number of possible outcomes.

This may seem obvious today, but in Cardano’s day such an approach marked

an enormous leap forward in the development of probability theory.

Nevertheless, many historians mark 1654 as the birth of the study of

probability, since in that year questions posed by gamblers led to an exchange

of letters between the great French mathematicians Pierre de Fermat (1601–

1665) and Blaise Pascal (1623–1662). This famous correspondence laid the

groundwork for the birth of the study of probability, especially their question

of how two players in a game of chance should divide the stakes if the

game ends prematurely. This problem of points, which will be discussed in

Chapter 3, was the catalyst that enabled probability theory to develop beyond

mere combinatorial enumeration.

In 1657, the Dutch astronomer Christiaan Huygens (1629–1695) learned of

the Fermat–Pascal correspondence and shortly thereafter published the book

De Ratiociniis de Ludo Aleae (On Reasoning in Games of Chance), in which

he worked out the concept of expected value and unified various problems

that had been solved earlier by Fermat and Pascal. Huygens’ work led the

field for many years until, in 1713, the Swiss mathematician Jakob Bernoulli
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2 1 Foundations of Probability Theory

(1654–1705) published Ars Conjectandi (The Art of Conjecturing) in which

he presented the first general theory for calculating probabilities. Then, in

1812, the great French mathematician Pierre Simon Laplace (1749–1827)

published his Théorie Analytique des Probabilités. Here, Laplace applied

probabilistic ideas to many scientific and practical problems, and his book

represents perhaps the single greatest contribution in the history of probability

theory. Towards the end of the nineteenth century, mathematicians attempted

to construct a solid foundation for the mathematical theory of probability by

defining probabilities in terms of relative frequencies. That attempt, however,

was marked by much controversy, and the frequency view of probability did

not lead to a satisfactory theory.

An acceptable definition of probability should be precise enough for use in

mathematics and yet comprehensive enough to be applicable to a wide range of

phenomena. It was not until 1933 that the great Russian mathematician Andrey

Nikolaevich Kolmogorov (1903–1987) laid a satisfactory mathematical foun-

dation for probability theory by taking a number of axioms as his starting point,

as had been done in other fields of mathematics. Axioms state a number of

minimal requirements that the mathematical objects in question (such as points

and lines in geometry) must satisfy. In the axiomatic approach of Kolmogorov,

probability figures as a function on subsets of a so-called sample space, where

the sample space represents the set of all possible outcomes of the experiment.

He assigned probabilities to these subsets in a consistent way, using the concept

of additivity from measure theory. Those axioms are the basis for the mathe-

matical theory of probability, and, as a milestone, are sufficient to logically

deduce the law of large numbers. This law confirms our intuition that the prob-

ability of an event in a repeatable experiment can be estimated by the relative

frequency of its occurrence in many repetitions of the experiment. The law of

large numbers is the fundamental link between theory and the real world.

Nowadays, more than ever before, probability theory is indispensable in

a wide variety of fields. It is absolutely essential to the field of insurance.

Likewise the stock market, “the largest casino in the world,” cannot do without

it. Call centers and airline companies apply probabilistic methods to determine

how many service desks will be needed based on expected demand. In stock

control, probability theory is used to find a balance between the cost risks of

running out of inventory and the cost of holding too much inventory in a market

with uncertain demand. Engineers use probability theory when constructing

dikes, to calculate the probability of water levels exceeding their margins.

Judges and physicians benefit from a basic knowledge of probability theory, to

help make better judicial and medical decisions. In short, probabilistic thinking

has become an integral part of modern life.
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1.1 Probabilistic Foundations 3

The purpose of this chapter is to give the student a solid basis for solving

probability problems. We first discuss the intuitive and fundamental axioms of

probability, and from them derive a number of basic rules for the calculation

of probabilities. These rules include the complement rule, the addition rule,

and the inclusion–exclusion rule, for which many illustrative examples are

provided. These examples, which are instructive and provide insight into the

theory, include classical probability problems such as the birthday problem and

the hat-check problem.

Traditionally, introductory probability books begin with a comprehensive

discussion of set theory and combinatorics before presenting the “real stuff.”

This will not be done in this book, as it is not necessary and often stifles

the student’s natural curiosity and fascination with probability. Rather, the

appendices at the end of the book provide a self-contained overview of the

essentials of set theory and the basic tools from combinatorics, and these tools

are not introduced until they are needed.

1.1 Probabilistic Foundations

A probability model is a mathematical representation of a real-world situation

or a random experiment. It consists of a complete description of all possible

outcomes of the experiment and an assignment of probabilities to these

outcomes. The set of all possible outcomes of the experiment is called the

sample space. A sample space is always such that one and only one of the

possible outcomes occurs if the experiment is performed. Here are some

examples:

• The experiment is to toss a coin once. The sample space is the set {H, T},
where H means that the outcome of the toss is a head and T that it is a tail.

Each outcome gets assigned a probability of 1
2

if the coin is fair.

• The experiment is to roll a die once. The sample space is the set {1, 2, . . . , 6},
where outcome i means that i dots appear on the up face. Each outcome gets

assigned a probability of 1
6

if the die is fair.

• The experiment is to choose a letter at random from the word “statistics.”

The sample space is the set {s, t, a, i, c}. The probabilities 3
10

, 3
10

, 1
10

, 2
10

, and
1
10

are assigned to the five outcomes s, t, a, i, and c.

• The experiment is to repeatedly roll a fair die until the first six shows up.

The sample space is the set {1, 2, . . .} of the positive integers. Outcome k

indicates that the first six shows up on the kth roll. The probabilities 1
6
, 5

6
×

1
6
, ( 5

6
)2 × 1

6
, . . . are assigned to the outcomes 1, 2, 3, . . . .
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4 1 Foundations of Probability Theory

• The experiment is to measure the time until the first emission of a particle

from a radioactive source. The sample space is the set (0, ∞) of the positive

real numbers, where outcome t indicates that it takes a time t until the first

emission of a particle. Taking an appropriate unit of time, the probability
∫ b

a
e−t dt can be assigned to each time interval (a, b) on the basis of physical

properties of radioactive material, where e = 2.71828 . . . is the base of the

natural logarithm.

In probability applications we are typically interested in particular subsets of

the sample space, which in probability language are called events. The terms

event and subset of outcomes of an experiment are used interchangeably in

probability theory. In the second example, the event that an odd number is

rolled is the subset A = {1, 3, 5} of the sample space. In the fourth example, the

event that more than six rolls are needed to get a six is the subset A = {7, 8, . . .}
of the sample space. In the fifth example, the event that it takes between 5 and 7

time units until the first emission of a particle is the subset A = {t : 5 ≤ t ≤ 7}
of the sample space, where “:” means “such that.”

Various choices for the sample space are sometimes possible. In the

experiment of tossing a fair coin twice, a possible choice for the sample

space is the set {HH, HT , TH, TT}. Another possible choice is the set {0, 1, 2},
where the outcome indicates the number of heads obtained. The assignment of

probabilities to the elements of the sample space differs for the two choices.

In the first choice of the sample space, the four elements are equally likely

and each element gets assigned the probability 1
4

. In the second choice of the

sample space, the elements are not equally likely and the elements 0, 1, and 2

get assigned the probabilities 1
4
, 1

2
, and 1

4
. In general, it is preferable to use a

sample space with equally likely outcomes whenever possible.

In the first three examples above, the sample space is a finite set. In the fourth

example the sample space is a so-called countably infinite set, while in the fifth

example the sample space is a so-called uncountable set. Let us briefly explain

these basic concepts from set theory, see also Appendix B. The set of natural

numbers (positive integers) is an infinite set and is the prototype of a countably

infinite set. In general, a nonfinite set is called countably infinite if a one-to-

one function exists which maps the elements of the set to the set of natural

numbers. In other words, every element of the set can be assigned to a unique

natural number and conversely each natural number corresponds to a unique

element of the set. For example, the set of squared numbers 1, 4, 9, 16, 25, . . .

is countably infinite. Not all sets with an infinite number of elements are

countably infinite. The set of all points on a line and the set of all real

numbers between 0 and 1 are examples of infinite sets that are not countable.
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1.1 Probabilistic Foundations 5

The German mathematician Georg Cantor (1845–1918) proved this result in

the nineteenth century. This discovery represented an important milestone in

the development of mathematics and logic (the concept of infinity, to which

even scholars from ancient Greece had devoted considerable energy, obtained

a solid theoretical basis for the first time through Cantor’s work). Sets that are

neither finite nor countably infinite are called uncountable, whereas sets that

are either finite or countably infinite are called countable.

1.1.1 Axioms of Probability Theory

A probability model consists of a sample space together with the assignment of

probability, where probability is a function that assigns numbers between 0 and

1 to subsets of the sample space. The axioms of probability are mathematical

rules that the probability function must satisfy. The axioms of probability

are essentially the same for a chance experiment with a countable or an

uncountable sample space. A distinction must be made, however, between

the sorts of subsets to which probabilities can be assigned, whether these

subsets occur in countable or uncountable sample spaces. In the case of a

countable sample space, probabilities can be assigned to each subset of the

sample space. In the case of an uncountable sample space, weird subsets can

be constructed to which we cannot associate a probability. Then the probability

measure is only defined on a sufficiently rich collection of well-behaved

subsets, see Appendix B for more details. These technical matters will not be

discussed further in this introductory book. The reader is asked to accept the

fact that, for more fundamental mathematical reasons, probabilities can only

be assigned to well-behaved subsets when the sample space is uncountable.

In the case that the uncountable sample space is the set of real numbers, then

essentially only those subsets consisting of a finite interval, the complement

of any finite interval, the union of any countable number of finite intervals,

or the intersection of any countable number of finite intervals are assigned

a probability. These subsets suffice for practical purposes. The probability

measure on the sample space is denoted by P. It assigns to each well-behaved

subset A a probability P(A) and must satisfy the following properties:

Axiom 1 P(A) ≥ 0 for each subset A of the sample space.

Axiom 2 P(�) = 1 for the sample space �.

Axiom 3 P
(

∞
⋃

i=1

Ai

)

=
∞
∑

i=1

P(Ai) for every collection of pairwise disjoint

subsets A1, A2, . . . of the sample space.
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6 1 Foundations of Probability Theory

The union
⋃∞

i=1 Ai of the subsets A1, A2, . . . is defined as the set of all outcomes

which belong to at least one of the subsets A1, A2, . . . . The subsets A1, A2, . . .

are said to be pairwise disjoint when any two subsets have no element in

common. In probability terms, any subset of the sample space is called an

event. If the outcome of the chance experiment belongs to the subset A, then the

event A is said to occur. The events A1, A2, . . . are said to be mutually exclusive

(or disjoint) if the corresponding sets A1, A2, . . . are pairwise disjoint. In other

words, events A1, A2, . . . are mutually exclusive if the occurrence of one of

these events implies the non-occurrence of the others. For example, suppose

that a die is rolled. The outcome is one of the numbers from 1 to 6. Let A be

the event that the outcome 1 or 2 occurs and B be the event that the outcome 5

or 6 occurs. Then A and B are mutually exclusive events. As another example,

suppose that a coin is tossed until heads appears for the first time. Let Ak be

the event that heads appears for the first time at the kth toss. Then the events

A1, A2, . . . are mutually exclusive.

The first two axioms simply express a probability as a number between 0

and 1. The crucial third axiom states that, for any infinite sequence of mutually

exclusive events, the probability of at least one of these events occurring is

the sum of their individual probabilities. This property also holds for any finite

sequence of mutually exclusive events. Using the concept of the empty set, the

proof of this result is almost trivial, see Rule 1.1 in Section 1.5. The countable

additivity in Axiom 3 is required to have a unified framework for finite and

nonfinite sample spaces. Starting with the three axioms and a few definitions,

a powerful and beautiful theory of probability can be developed.

The standard notation for the sample space is the symbol �. An outcome of

the sample space is denoted by ω. A sample space together with a collection of

events and an assignment of probabilities to the events is called a probability

space. For a countable sample space �, it is sufficient to assign a probability

p (ω) to each element ω ∈ � such that p (ω) ≥ 0 and
∑

ω∈� p (ω) = 1.

A probability measure P on � is then defined by specifying the probability of

each event A as

P(A) =
∑

ω∈A

p(ω).

In other words, P(A) is the sum of the individual probabilities of the outcomes

ω that belong to the set A. It is left to the reader to verify that P satisfies Axioms

1 to 3.

A probability model is constructed with a specific situation or experiment in

mind. The assignment of probabilities is part of the translation process from a

concrete context into a mathematical model. Probabilities may be assigned to
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1.2 Classical Probability Model 7

events any way you like, as long as the above axioms are satisfied. To make

your choice of the probabilities useful, the assignment should result in a “good”

model for the real-world situation. There are two main approaches to assigning

probabilities to events. In the relative-frequency approach, probabilities are

assigned to the outcomes of a physical experiment having the feature that it

can be repeated over and over under identical conditions. Think of spinning a

roulette wheel or rolling dice. Then one may speak of physical probabilities

and such probabilities can be determined experimentally. In the subjective

approach, the word probability is roughly synonymous with plausibility and

probability is defined as the degree of belief a particular person holds in the

occurrence of an event. Think of the chances of your favorite horse winning a

race or the chances of your favorite baseball team winning the World Series.

Hence judgment is used as the basis for assigning subjective probabilities.

The use of the subjective approach is usually limited to experiments that are

unrepeatable. In this book the emphasis is on physical probabilities, but we

will also pay attention to subjective probabilities in Chapters 2 and 7.

1.2 Classical Probability Model

In many experiments with finitely many outcomes ω1, . . . , ωm, it is natural to

assume that all these outcomes are equally likely to occur (this probability

model is, in fact, also based on judgment). In such a case, p(ωi) = 1
m

for

i = 1, . . . , m and each event A gets assigned the probability

P(A) =
m(A)

m
,

where m(A) is the number of outcomes in the set A. This model is sometimes

called the classical probability model or the Laplace model.

Example 1.1 John, Pedro, and Rosita each roll one fair die. How do we

calculate the probability that Rosita’s score is equal to the sum of the scores of

John and Pedro?

Solution. We take the set {(i, j, k) : i, j, k = 1, . . . , 6} as sample space for

the chance experiment, where the outcome (i, j, k) means that John’s score is

i dots, Pedro’s score is j dots, and Rosita’s score is k dots. Each of the 216

possible outcomes is equally probable, and thus gets assigned a probability

mass of 1
216

. Rosita’s score is equal to the sum of the scores of John and Pedro

if and only if one of the 15 outcomes (1,1,2), (1,2,3), (2,1,3), (1,3,4), (3,1,4),

(2,2,4), (1,4,5), (4,1,5), (2,3,5), (3,2,5), (1,5,6), (5,1,6), (2,4,6), (4,2,6), (3,3,6)

occurs. The probability of this event is thus 15
216

.
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8 1 Foundations of Probability Theory

Example 1.2 Three players enter a room and are given a red or a blue hat to

wear. The color of each hat is determined by a fair coin toss. Players cannot see

the color of their own hats, but do see the color of the other two players’ hats.

The game is won when at least one of the players correctly guesses the color

of his own hat and no player gives an incorrect answer. In addition to having

the opportunity to guess a color, players may also pass. Communication of any

kind between the players is not permissible after they have been given their

hats; however, they may agree on a group strategy beforehand. The players

decided upon the following strategy. A player who sees that the other two

players wear a hat with the same color guesses the opposite color for his/her

own hat; otherwise, the player says nothing. What is the probability of winning

the game under this strategy?

Solution. This chance experiment can be seen as tossing a fair coin three

times. As sample space, we take the set consisting of the eight elements RRR,

RRB, RBR, BRR, BBB, BBR, BRB, RBB, where R stands for a red hat and B

for a blue hat. Each element of the sample space is equally probable and gets

assigned a probability of 1
8

. The strategy is winning if one of the six outcomes

RRB, RBR, BRR, BBR, BRB, or RBB occurs (verify!). Thus, the probability of

winning the game under the chosen strategy is 3
4
.

In Example 1.2 we have encountered a useful problem-solving strategy: see

whether the problem can be related to a familiar problem.

As preparation for the next example, consider a task that involves a sequence

of r choices. Suppose that n1 is the number of possible ways the first choice

can be made, n2 is the number of possible ways the second choice can be made

after the first choice has been made, and n3 is the number of possible ways the

third choice can be made after the first two choices have been made, etc. Then

the total number of possible ways the task can be performed is n1×n2×· · ·×nr.

For example, the total number of possible ways five people can stand in line is

5 × 4 × 3 × 2 × 1 = 120. In other words, there are 120 permutations.

Example 1.3 In a Monte Carlo casino the roulette wheel is divided into

37 sections numbered 1 to 36 and 0. What is the probability that all numbers

showing up in eight spins of the wheel are different?

Solution. Take as sample space the set of all ordered sequences (i1, . . . , i8),

where ik is the number showing up at the kth spin of the wheel. The sample

space has 37 × 37 × · · · × 37 = 378 equiprobable elements. The number

of elements for which all components are different is 37 × 36 × · · · × 30.

Therefore, the sought probability is
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1.2 Classical Probability Model 9

37 × 36 × · · · × 30

378
= 0.4432.

We reiterate the concept of the binomial coefficient before continuing.

Definition 1.1 The binomial coefficient
(

n
k

)

denotes the total number of ways

to choose k different objects out of n distinguishable objects, with order not

mattering.

In other words,
(

n
k

)

is the total number of combinations of k different objects

out of n. The key difference between permutations and combinations is order.

Combinations are unordered selections, permutations are ordered arrange-

ments. In Appendix A these important concepts are discussed extensively and

illustrated with several combinatorial probability problems. For any integers n

and k with 1 ≤ k ≤ n, the binomial coefficient can be calculated as

(

n

k

)

=
n!

k! (n − k)!
,

where m! is shorthand for 1×2×· · ·×m with the convention 0! = 1. Note that
(

n
k

)

=
(

n
n−k

)

with the convention
(

n
0

)

= 1. For example, the number of ways

to choose three jurors out of five candidates is
(

5
3

)

= 5!
3! 2!

= 120
6×2

= 10, with

order not mattering.

In no book on introductory probability should problems on tossing coins,

rolling dice, and dealing cards be missing. The next examples deal with these

sorts of probability problems and use binomial coefficients to solve them.

Example 1.4 A fair coin is tossed 100 times. What is the probability of getting

exactly 50 heads?

Solution. Take as sample space all possible sequences of zeros and ones to a

length of 100, where a zero stands for tails and a one for heads. The sample

space has 2100 equiprobable elements. The number of elements having exactly

50 ones is
(

100
50

)

. Therefore, the probability of getting exactly 50 heads is

(

100
50

)

2100
.

This probability is the ratio of two enormously large numbers and its com-

putation requires special provisions. However, a very accurate approximation

to this probability can be given. To this end, consider the general case of 2N

tosses of a fair coin. Then the probability pN of getting exactly N heads is

pN =
(

2N
N

)

22N
.
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10 1 Foundations of Probability Theory

To approximate this probability, we use Stirling’s approximation for n!. This

famous approximation states that

n! ≈
√

2πn
(n

e

)n

for sufficiently large n, where the mathematical constant e is the Euler number

2.7182818 . . .. In practice, this approximation is useful for n ≥ 10. The relative

error percentage is about 100
12n

%. Using Stirling’s approximation, we find

pN =
(2N)!

N! N!

1

22N
≈

√
2π × 2N (2N/e)2N

√
2πN (N/e)N

√
2πN (N/e)N

1

22N
.

Canceling out common terms in the denominator and numerator, we get

pN ≈
1

√
πN

for N sufficiently large. This approximation is not only very accurate, but also

gives insight into how the probability pN depends on N. The approximate value

of p50 is 0.07979, while the exact value is 0.07959.

Example 1.5 What is the probability that three different face values each

appear twice in a roll of six dice?

Solution. Take as sample space the set of all possible sequences of the face

values 1, 2, . . . , 6 to a length of 6. The sample space has 66 equiprobable

elements. There are
(

6
3

)

ways to choose the face values for the three pairs of

different face values. There are
(

6
2

)

possible combinations of two dice from

the six dice for the first pair,
(

4
2

)

possible combinations of two dice from the

remaining four dice for the second pair, and then one combination of two dice

remains for the third pair. Thus the probability of getting three pairs of different

face values in a roll of six dice is
(

6
3

)

×
(

6
2

)

×
(

4
2

)

× 1

66
= 0.0386.

The next example shows that the choice of the sample space is not always

unambiguous.

Example 1.6 A bridge hand in which there is no card higher than a nine is

called a Yarborough. What is the probability of a Yarborough when you are

randomly dealt 13 cards out of a well-shuffled deck of 52 cards?

Solution. The choice of the sample space depends on whether we care about

the order in which the cards are dealt from the deck of 52 cards. If we consider

the order in which the 13 cards are dealt as being relevant, then we take a
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