

Cellular Flows

A cell, whose spatial extent is small compared with a surrounding flow, can develop inside a vortex. Such cells, often referred to as vortex breakdown bubbles, provide stable and clean flame in combustion chambers; they also reduce the lift force of delta wings. This book analyzes cells in slow and fast, one- and two-fluid flows and describes the mechanisms of cell generation: (a) minimal energy dissipation, (b) competing forces, (c) jet entrainment, and (d) swirl decay. This book explains the vortex breakdown appearance, discusses its features, and indicates means of its control. Written in acceptable, non-math-heavy format, it stands to be a useful learning tool for engineers working with combustion chambers, chemical and biological reactors, and delta-wing designs.

Dr. Vladimir Shtern is currently a consultant at Ghent University, Belgium, and at SABIC Americas Inc., Houston. He previously held a faculty position at the University of Houston and visiting faculty positions at the University of Seville, University of Bristol, and the DLR Institute of Fluid Mechanics in Germany. He has also served as a consultant for Shell US, BP-Amoco Exploration, and SABIC Americas companies. Dr. Shtern is the author of *Counterflows: Paradoxical Fluid Mechanics Phenomena* (Cambridge University Press, 2012), and is a regular contributor to the *Journal of Fluid Dynamics* and *Physics of Fluids*.

Cellular Flows

Topological Metamorphoses in Fluid Mechanics

VLADIMIR SHTERN

SABIC Houston, Texas

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108418621

DOI: 10.1017/9781108290579

© Vladimir Shtern 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Names: Shtern, V. (Vladimir), 1940- author.

Title: Cellular flows: topological metamorphoses in fluid mechanics / Vladimir Shtern,

SABIC Houston, Texas.

 $Description: Cambridge, United Kingdom; New York, NY: Cambridge \ University \ Press, 2018. \ |$

Includes bibliographical references and index.

Identifiers: LCCN 2017040155 | ISBN 9781108418621 (hardback)

Subjects: LCSH: Cellular flow. | BISAC: TECHNOLOGY & ENGINEERING / Mechanical.

Classification: LCC TA357.5.C45 S58 2018 | DDC 620.1/06-dc23

LC record available at https://lccn.loc.gov/2017040155

ISBN 978-1-108-41862-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Ack	nowledgments	page XIII	
1	Introduction: Flow Cells and Mechanisms of Their Formation			
	1.1	Vortex Breakdown	2	
	1.2	Centrifugal Convection	8	
	1.3	Creeping Eddies	8	
	1.4	Two-Fluid Cellular Flows	9	
	1.5	Eddy Generation by Swirl Decay	10	
	1.6	Eddy Generation by Jet Entrainment	11	
	1.7	Minimal-Dissipation Eddies	13	
	1.8	Eddies Induced by Competing Forces	13	
	1.9	Approach	14	
2	Creeping Eddies			
	2.1	Moffatt Eddies	15	
		2.1.1 Corner Eddies	15	
		2.1.2 Asymptotic Flow in a Deep Cavity	17	
		2.1.3 Problem Formulation for a Flow in a Plane Cavity	18	
		2.1.4 Analytical Solutions Describing a Flow in a Plane Cavity	19	
		2.1.5 Analytical Solutions Describing a Flow in a Narrow Corner	25	
	2.2	Flow in an Annular Cylindrical Cavity	28	
		2.2.1 Problem Motivation	28	
		2.2.2 Problem Formulation	30	
		2.2.3 Axisymmetric Flow	31	
		2.2.4 Three-Dimensional Asymptotic Flow	38	
	2.3	Flow in an Annular Conical Cavity	42	
		2.3.1 Review and Motivation	42	
		2.3.2 Reduction of Governing Equations	42	
		2.3.3 Analytical and Numerical Solutions	44	
		2.3.4 Summary of the Results	47	

vi **Contents**

3	Two	-Fluid Creeping Flows	48
	3.1	Interface Eddies	48
		3.1.1 Problem Motivation	48
		3.1.2 Characteristic Equation	49
		3.1.3 Air-Water Flows Near an Inclined Wall	51
		3.1.4 Air-Water Flows Near a Vertical Wall	53
		3.1.5 Conclusion	55
	3.2	Air-Water Flow in a Cylindrical Container	55
		3.2.1 Problem Motivation	55
		3.2.2 Problem Formulation	57
		3.2.3 Numerical Procedure	59
		3.2.4 Shallow Water Spout	60
		3.2.5 Effect of the Centrifugal Force	62
		3.2.6 Changes in the Flow Topology as the Water Volume Increases	65
		3.2.7 Features of Deep-Water Spout at $H_w = 0.8$	71
		3.2.8 Collapse of Air Cells	74
		3.2.9 The Effect of the Air-to-Water Density Ratio	77
		3.2.10 The Pattern Control by the Bottom Disk Corotation	78
		3.2.11 The Effect of Increasing Rotation of the Top Disk	78
		3.2.12 Summary of Topological Metamorphoses	81
	3.3	Air-Water Flow in a Truncated Conical Container	82
		3.3.1 Problem Motivation	82
		3.3.2 Problem Formulation	84
		3.3.3 Shallow Water Spout	86
		3.3.4 Topological Metamorphoses of Air-Water Flow	
		in the $\alpha = 120^{\circ}$ Cone as H_w Increases	89
		3.3.5 Topological Flow Metamorphoses in the $\alpha = 60^{\circ}$	
		Cone as H _w Increases	93
		3.3.6 The Effect of Increasing the Value of the Reynolds Number	101
		3.3.7 Conclusion	103
	3.4	Air-Water Flow in a Conical Container	104
		3.4.1 Problem Motivation	104
		3.4.2 Problem Formulation	106
		3.4.3 Topological Metamorphoses in the $\beta = 30^{\circ}$ Cone	107
		3.4.4 Topological Metamorphoses in the $\beta = 45^{\circ}$ Cone	110
		3.4.5 Topological Metamorphoses in the $\beta = 60^{\circ}$ Cone	111
		3.4.6 The Effect of Intensifying Disk Rotation	113
		3.4.7 Conclusion	113
	3.5	Air-Water Flow in a Semispherical Container	115
		3.5.1 Problem Motivation	115
		3.5.2 Problem Formulation	115
		3.5.3 Development of New Cells in a Creeping Flow as	
		Water Height Increases	118

	Cont	ents		vi
			Flow Transformations as the Reynolds Number Increases	122
		3.5.5	Conclusion	125
4	Forn	nation o	of Cells in Thermal Convection	126
	4.1	Centr	rifugal Convection in a Rotating Pipe	126
			Introduction	126
			Problem Formulation	128
			Parallel Flow	129
			Flow in an Annular Pipe at Small εRe	130
			Narrow-Gap Flow	131
			End-Wall Effect	132
	4.2		lity of Centrifugal Convection in a Rotating Pipe	134
			Problem Motivation	134
			Problem Formulation	135
			Numerical Technique	139
			Stability of Centrifugal Convection in a Filled Pipe	139
			Stability of Centrifugal Convection in a Thin Annular Gap	142
		4.2.6	,	145
		4.2.7	Ę	149
			Conclusion	153
	4.3		cation of Cells in a Horizontal Cavity	154
			Problem Motivation	155
			Problem Formulation	157
			Numerical Technique	159
			Development of Boundary Layers Near Vertical Walls	160
			Development of Local Circulation Cells	165
			Scales of Horizontal Near-Wall Jets	170
			Heat Flux between Hot and Cold Vertical Walls	174
	4.4		Conclusion	177
	4.4		Formation in a Rotating Cylinder	178
			Problem Motivation	178
		4.4.2	Problem Formulation	179
			Numerical Technique	181
			Flow Features at $Pr = 0$	182
			Mercury Convection	188
		4.4.6		189
	1.5		Water Convection	191
	4.5		lity of Convection in a Rotating Cylinder	194
		4.5.1	Stability at $Pr = 0$	194
		4.5.2	Stability of Mercury Convection	197
		4.5.3	· ·	197
		4.5.4	•	198
		4.5.5	Conclusion	199

viii Contents

	4.6	Air-Water Centrifugal Convection	200
		4.6.1 Problem Motivation	200
		4.6.2 Problem Formulation	202
		4.6.3 Numerical Technique	205
		4.6.4 Analytical Solution for Two-Fluid Convection	
		in a Rotating Pipe	206
		4.6.5 Patterns of Slow Convection	208
		4.6.6 Nonlinear Effects	214
		4.6.7 Conclusion	218
	4.7	Air-Water Cells in a Horizontal Cavity	219
		4.7.1 Problem Motivation	219
		4.7.2 Problem Formulation	220
		4.7.3 The Flow Features Away from the Container Ends	223
		4.7.4 Numerical Technique	229
		4.7.5 Slow Two-Dimensional Basic Flow	230
		4.7.6 Transformations of Two-Dimensional Basic Flow	
		as Gr Increases at $Ma = 0$	231
		4.7.7 Flow Transformations as Ma Increases at Fixed Gr	237
		4.7.8 Stability of the Horizontal Flow	239
		4.7.9 Stability of the Two-Dimensional Convection	240
		4.7.10 Conclusion	242
5	Swir	l Decay Mechanism	244
5	Swir 5.1	Pressure Distribution in Vortices	244 244
5		•	
5		Pressure Distribution in Vortices	244
5		Pressure Distribution in Vortices 5.1.1 Rankine Vortex	244 244
5		Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex	244 244 245 245 246
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows	244 244 245 245
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows	244 244 245 245 246
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation	244 244 245 245 246 247 247 248
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay	244 244 245 245 246 247 247 248 249
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation	244 244 245 245 246 247 247 248 249 251
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay 5.2.4 Velocity Profiles 5.2.5 Pressure Distribution	244 244 245 245 246 247 247 248 249 251 253
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay 5.2.4 Velocity Profiles 5.2.5 Pressure Distribution 5.2.6 End-Wall Effects	244 244 245 245 246 247 247 248 249 251
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay 5.2.4 Velocity Profiles 5.2.5 Pressure Distribution 5.2.6 End-Wall Effects 5.2.7 Comparison of Flows Induced by Swirl Decay	244 244 245 245 246 247 247 248 249 251 253 255
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay 5.2.4 Velocity Profiles 5.2.5 Pressure Distribution 5.2.6 End-Wall Effects 5.2.7 Comparison of Flows Induced by Swirl Decay and by Centrifugal Convection	244 244 245 245 246 247 247 248 249 251 253 255
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay 5.2.4 Velocity Profiles 5.2.5 Pressure Distribution 5.2.6 End-Wall Effects 5.2.7 Comparison of Flows Induced by Swirl Decay and by Centrifugal Convection Turbulent Counterflow Driven by Swirl Decay	244 244 245 245 246 247 247 248 249 251 253 255
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay 5.2.4 Velocity Profiles 5.2.5 Pressure Distribution 5.2.6 End-Wall Effects 5.2.7 Comparison of Flows Induced by Swirl Decay and by Centrifugal Convection Turbulent Counterflow Driven by Swirl Decay 5.3.1 Summary	244 244 245 245 246 247 247 248 249 251 253 255 257 258 258
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay 5.2.4 Velocity Profiles 5.2.5 Pressure Distribution 5.2.6 End-Wall Effects 5.2.7 Comparison of Flows Induced by Swirl Decay and by Centrifugal Convection Turbulent Counterflow Driven by Swirl Decay 5.3.1 Summary 5.3.2 Problem Motivation	244 244 245 245 246 247 247 248 249 251 253 255 257 258 258
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay 5.2.4 Velocity Profiles 5.2.5 Pressure Distribution 5.2.6 End-Wall Effects 5.2.7 Comparison of Flows Induced by Swirl Decay and by Centrifugal Convection Turbulent Counterflow Driven by Swirl Decay 5.3.1 Summary 5.3.2 Problem Motivation 5.3.3 Problem Formulation	244 244 245 245 246 247 247 248 249 251 253 255 257 258 258 258 260
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay 5.2.4 Velocity Profiles 5.2.5 Pressure Distribution 5.2.6 End-Wall Effects 5.2.7 Comparison of Flows Induced by Swirl Decay and by Centrifugal Convection Turbulent Counterflow Driven by Swirl Decay 5.3.1 Summary 5.3.2 Problem Motivation 5.3.3 Problem Formulation 5.3.4 Numerical Procedure	244 244 245 245 246 247 247 248 249 251 253 255 258 258 260 264
5	5.1	Pressure Distribution in Vortices 5.1.1 Rankine Vortex 5.1.2 Modified Rankine Vortex 5.1.3 Lamb-Oseen Vortex 5.1.4 Converging-Diverging Swirling Flow Theory of Swirl Decay in Elongated Cylindrical Flows 5.2.1 Elongated Counterflows 5.2.2 Problem Formulation 5.2.3 Modeling Swirl Decay 5.2.4 Velocity Profiles 5.2.5 Pressure Distribution 5.2.6 End-Wall Effects 5.2.7 Comparison of Flows Induced by Swirl Decay and by Centrifugal Convection Turbulent Counterflow Driven by Swirl Decay 5.3.1 Summary 5.3.2 Problem Motivation 5.3.3 Problem Formulation	244 244 245 245 246 247 247 248 249 251 253 255 257 258 258 258 260

	Cont	ents		ix
		5.3.7	Three-Dimensional Simulations	276
		5.3.8	Combustion Experiment	277
			Conclusion	279
	5.4	Doub	le Counterflow Driven by Swirl Decay	280
		5.4.1	•	280
		5.4.2	Problem Motivation	280
			Problem Formulation	281
		5.4.4	Numerical Procedure	283
		5.4.5	Development of Global Counterflow as Swirl Intensifies	284
		5.4.6	Development of Global Through-Flow as Re Increases	285
		5.4.7	Comparison with the Asymptotic Theory	286
		5.4.8	Vortex Breakdown Development	288
			Development of Double Counterflow	292
		5.4.10	Numerical Simulations of Turbulent Double Counterflow	299
			Combustion Experiments with Double Counterflow	301
		5.4.12	Conclusion	301
	5.5	Swirl	Decay in a Vortex Trap	303
		5.5.1	Problem Motivation	303
		5.5.2	Problem Formulation	303
		5.5.3	Development of Global Counterflow	305
		5.5.4	Development of Global Meridional Circulation	306
		5.5.5	Comparison with the Asymptotic Theory	307
		5.5.6	Development of Local Pressure Minimum	
			at Container Center	308
			Vortex Breakdown	310
		5.5.8	Development of Double Counterflow	312
		5.5.9	Development of Kármán Vortex Street	315
		5.5.10	Conclusion	317
6	Vort	ex Breal	kdown in a Sealed Cylinder	319
	6.1		Explanations of Vortex Breakdown Nature	319
		6.1.1	Inertial Wave Roll Up	319
		6.1.2	Collapse of Near-Axis Boundary Layer	320
		6.1.3	Instability	320
		6.1.4	Hysteresis	320
		6.1.5	Internal Flow Separation	321
	6.2		opment of Global Circulation in the Vogel-Escudier Flow	321
		6.2.1	Problem Formulation	322
			Numeric Technique	323
			Development of Global Counterflow as Rotation Speeds Up	323
			Decay Rate of Swirl in Global Counterflow	324
		6.2.5	Formation of a Local Maximum of Swirl Vorticity	
			Near the Rotating Disk	327
		6.2.6	Relocation of Local Minimum of Pressure	329

Contents

6.3	Vorte	x Breakdown in the Vogel-Escudier Flow	330
	6.3.1	Focusing of Flow Convergence Near the Stationary Disk	330
	6.3.2	Vortex Breakdown Near Rotating Disk	333
	6.3.3	Vortex Breakdown Near Stationary Disk	335
	6.3.4	Formation of Tornado-Like Jet Near Stationary Disk	336
	6.3.5	Chain-Like Process of Vortex Breakdown	339
	6.3.6	Merging of Vortex Breakdown Bubbles	340
	6.3.7	Summary of Swirl-Decay Mechanism	
		in Sealed-Container Flow	341
6.4	Contr	ol of Vortex Breakdown by Sidewall Corotation and	
	by Te	mperature Gradients	343
	•	Effect of Sidewall Corotation	343
	6.4.2	Vortex Breakdown Control by Temperature Gradients	344
6.5		x Breakdown Control by Rotating Rod	360
		Introduction	360
	6.5.2	Experimental Setup and Technique	362
		Corotation Experiment	363
		Role of Axial Pressure Gradient	365
	6.5.5	Pressure Distribution	365
	6.5.6	Features of Control Flow	366
	6.5.7	Interpretation of Corotation Results	368
		Counter-Rotation Experiment	369
		Centrifugal Instability	371
		Comparison with Other Experiments	374
		Conclusion	375
6.6		rol of Vortex Breakdown by Rotating Rod: Numerical Results	375
		Vortex Breakdown Control by Adding Near-Axis Rotation	375
		Near-Axis Rotation and Axial Temperature Gradient	380
		Conclusion	386
6.7		bility Nature of Vogel-Escudier Flow	387
0.,		Problem Formulation	387
		Critical Parameters	389
		Base-Flow Features at $Re = 3,100$ and $h = 8$	389
	6.7.4	· · · · · · · · · · · · · · · · · · ·	391
	6.7.5	Instability of a z-Independent Flow Model	393
	6.7.6	Stabilizing Effect of Additional Corotation of Sidewall	394
	6.7.7	Centrifugal Instability	397
	6.7.8	Conclusion	401
Celli	ular Whi	irlpool Flow	403
7.1		pool in a Sealed Cylinder	403
, . 1	7.1.1	Problem Motivation	403
	7.1.2		405
		Numerical Technique	407

7

8

Cambridge University Press & Assessment 978-1-108-41862-1 — Cellular Flows Vladimir Shtern Frontmatter More Information

Contents

7.1.4 Deep Whirlpool 408 7.1.5 Moderately Deep Whirlpool 417 7.1.6 Shallow Whirlpool 425 7.1.7 Conclusion 436 7.2 Off-Axis Vortex Breakdown 439 7.2.1 Problem Motivation 439 7.2.2 Verification of Numeric Technique 440 Development of Vortex Breakdown in Deep Whirlpool 440 7.2.3 Development of Vortex Breakdown in Shallow Whirlpool 443 7.2.4 7.2.5 Transition Between Off-Axis and On-Axis Vortex Breakdown Scenarios 447 7.2.6 Two-Fluid Vortex Breakdown Region at Large Deformation of Interface 447 Suppression of Off-Axis Vortex Breakdown at Large Deformation of Interface 447 7.2.8 Conclusion 448 **Cellular Water-Spout Flow** 450 Water-Spout Flow 8.1.1 Introduction 8.1.2 Problem Formulation 8.1.3 Numerical Procedure 8.1.4 Development of Thin Circulation Layer 8.1.5 Conclusion 8.2 Stability of Water-Spout Flow

χİ

Contents

		8.4.4	Vortex Breakdown in Oil Flow	489
		8.4.5	Instability	492
		8.4.6	Conclusion	494
9	Cellu	ılar Flov	ws in Vortex Devices	495
	9.1	Annu	lar-Jet Burner	495
		9.1.1	Introduction	495
		9.1.2	Conical Similarity Annular Swirling Jet	495
		9.1.3	Numerical Simulations of Combustion in Turbulent Flow	498
		9.1.4	Cold-Flow Experiments	501
		9.1.5	Combustion Experiments	503
		9.1.6	Conclusion	505
	9.2	Near-	Wall Jets in Disk-Like Vortex Chamber	505
		9.2.1	Introduction	505
		9.2.2	Experimental Setup and Technique	510
		9.2.3	Numerical Technique	512
		9.2.4	Flow Characterization	517
		9.2.5	Swirl-Free Flow	518
		9.2.6	Swirling Flow Characteristics	523
		9.2.7	Axial Distribution of Velocity in Disk Part of Chamber	527
		9.2.8	Cyclostrophic Balance	530
		9.2.9	Features of Near-End-Wall Jets	533
		9.2.10	Conclusion	538
	9.3	Multi	ple Cells in Disk-Like Vortex Chamber	539
		9.3.1	Introduction	539
		9.3.2	Backflow Features at High Swirl	540
		9.3.3	Formation of Near-Wall Jets as Swirl Ratio Increases	541
		9.3.4	Formation of Counterflow as Swirl Ratio Increases	543
		9.3.5	Counting Counterflow Rate	544
		9.3.6	Cell Multiplication as Swirl Ratio Increases	548
		9.3.7	Topological Transformations as Flow Rate Increases	550
		9.3.8	Conclusion	552
	Afte	rword		555
		erences		559
	Inde			571

Acknowledgments

This book is a kind of continuation of *Counterflows: Paradoxical Fluid Mechanics Phenomena*, in which my appreciations were expressed to all who helped that book become a reality. Here I am glad to reiterate my deep gratitude to my teacher Michael Goldshtik, and to Fazle Hussain, my supervisor at the University of Houston.

The most of recent results discussed in this book were obtained in the close and fruitful collaboration with Professor Miguel Herrada, his colleague Dr. José López-Herrera, his former postgraduate student Dr. Maria Torregrosa, and postgraduate student Luis Carrión. Their contributions are crucial.

Professor Gregory Yablonski provided his friendly and very important help by introducing me to Professor Guy Marin. Collaboration with Guy, his colleagues Professor Kevin van Geem and Professor Geraldine Heynderickx, their postgraduate students Arturo González and Kaustav Niyogi, and Dr. Maria Pantzali involved me in experimental and numerical studies of cellular flows in chemical vortex reactors. These studies helped clarify important and interesting flow features, which are discussed in Chapter 9 of this book.

Professor Morten Brøns and his former postgraduate student Dr. Adnan Balci helped me understand topological metamorphoses occurring in creeping air-water flows, discussed in Chapter 3. Dr. Anatoli Borissov performed the experimental studies related to the swirl decay mechanism (Chapter 5) and cellular combustion (Chapter 9). I appreciate the interest of Dr. David West in my consultant service, which was stimulating in writing this book.

I am deeply thankful to all my coauthors for their valuable collaboration and significant contribution. Finally, this book has been written owing to the help, inspiration, and care of my dear wife Clara.