

More Information

Cambridge University Press 978-1-108-41846-1 — Experimental Methods for Science and Engineering Students: An Introduction to the Analysis and Presentation of Data 2nd Edition Les Kirkup Index

Index

abscissa, 25 coefficient of linear expansion, Einstein, 1 absolute uncertainty, 67 38 combining uncertainties, 74-81 accuracy, 68 accuracy and precision, 68 difference, 79 summary of difference, 70 example, 79-80 error worked example, 69 Method I, 74 acronyms, 142 Method II, 77 AD548, 188 product, 79 quotient, 79 input resistance, 188 layout of connections, 188 sum, 78 ADC, 186, 190 when errors are uncorrelated, resolution, 190 101-102 analogue to digital converter, computer-aided data capture, 186, 190 185 analogue voltage, 186 confidence interval, 98-99 Analysis ToolPak confidence limits, 98-99 continuous and discrete descriptive statistics, 183 Histogram, 183 quantities, 103 Random Number Generation, continuously varying quantities 183 examples, 103 Regression, 183 CSV file, 182 summary, 182 t-Test, 183 DAQ, 190 answers, 202 data Arduino, 192 selection and rejection, 81 Arduino Uno tabulation, 12 circuit board, 193 scientific notation, 13 data acquisition system, 190 example program, 194 data gathering best estimate using a computer, 185 of a quantity, 60 using a plug and play system, the mean, 63 best estimate of true value using a smartphone, 194 standard error of the mean, using an Arduino, 192 89 degrees of freedom, 197 best line through x-y data, 111 dependent variable, 26 BIPM, 10 derived units, 10 Bluetooth, 195 deviation, 86 discrete quantities, 103 C programming language, 194 distributions calculator apps for normal, 94, 198 smartphones, 87 Poisson, 104 calibration uncertainty, 62 t. 198 charts, 169 documenting your work,

electronic notebook, 5 equations linearisation, 44 gain, 71 how it differs from uncertainty, 61 in measurement, 60 offset, 71 random, 70, 73 systematic, 63, 70 detection, 70 systematic and random, 70 - 74error bars, 29-30 estimation, 20 event, 104 Excel, 168 Analysis ToolPak, 182 charts, 169 Solver, 183 experimental data important features, 9 experiments importance in science and engineering, 1 stages, 2-4 extrapolation, 36 Fermi, 21 Fermi problems, 20 example, 21 fitting a line to x-y data difficulties, 111 using least squares, 111 flexi-curve, 31 fractional uncertainty, 67 further reading, 218 Gaussian distribution, 94 gradient of a line, 34 Graph (software) free graph plotting program,

citing references, 147

More Information

Cambridge University Press 978-1-108-41846-1 — Experimental Methods for Science and Engineering Students: An Introduction to the Analysis and Presentation of Data 2nd Edition Les Kirkup Index

222 Index

graphs	description of contents, 6-7	microcontroller, 186
abscissa, 25	documenting open-ended	Arduino, 192
axes, 24	experiments/projects, 7	Microsoft
dependent and independent	example of pages from a	PowerPoint, 161
variables, 25	notebook, 8	Publisher, 161
dependent variables, 26	least squares, 112	
error bars, 29	calculation difficulties, 117	non-linear least squares, 182
extrapolation, 36	comparison of weighted and	normal distribution, 82, 94
importance, 24	unweighted fit, 125	properties, 94
independent variable, 25	example of calculation of	shape, 95
interpolation, 36	uncertainty in m and c ,	notebook
key, 28	119	electronic, 5
labels, 26	example of fitting a line to	
line of best fit, 34-36	<i>x</i> – <i>y</i> data, 115	op-amp, 188
linear, 33	example of weighted fit,	example, 188
importance of, 34	123	open-ended experiments, 7
logarithmic, 48-50	example where	open-source, 193
logarithmic scales, 48	transformation requires	operational amplifier, 187
log-linear, 48	weighted fit, 126	oral presentations, 163
log-log, 50	interpretation of	answering questions, 165
ordinate, 25	uncertainties in m and c ,	body of talk, 165
origin, 29	121	conclusion, 165
outliers, 36	linear correlation coefficient,	delivery of presentation,
plotting, 24	r, 129	166
rise, 38	non-linear, 182	introduction, 165
run, 38	standard errors in slope and	preparation, 163
scales, 28	intercept, 118	presentation practice, 166
semi-log, 48	weighted, 121-127	technical aspects, 167
symbols, 28	weighting the fit, 121	visual aids, 166
title, 26	line of best fit, 34	order of magnitude, 20
units, 26	how to draw it, 36	ordinate, 25
when to plot, 32	linear correlation coefficient, 129	origin (of graph), 29
<i>x</i> – <i>y</i> , 24	linear regression, 112	Origin (software), 184
	linear x-y graphs, 33	outliers, 34, 36
Hall probe, 187	linearising equations	
Harvard referencing, 148	examples, 45	partial differentiation, 77
histogram, 91	LINEST, 176	PASCO, 191
bin, 91	example of application,	percentage uncertainty, 67
guide to plotting, 93	177	plotting graphs, 24
	logarithmic graphs, 48-51	plug and play systems, 191
importing (a file), 182	logbook, 5	Poisson distribution, 104
independent variable, 25	Logger Lite, 191	population, 96
intercept, 34, 37, 40	log-linear graphs, 48	population and sample, 96
calculation, 40	log-log graphs, 50	population mean, 97
uncertainty, 41		population parameter, 96
weighted, 123	map	posters, 160
intercept of best line through	example, 153	example, 161
<i>x</i> – <i>y</i> data, 114	to assist in report writing, 150	free templates, 161
interfacing, 185	mean, 63	preparation, 161
International System of Units, 10	best estimate of true value, 90	sizes, 161
interpolation, 36	calculating, 63	PowerPoint, 166
	measurand, 9	powers of 10 notation, 13
LabJack, 194	measurements	precision, 68
laboratory notebook 5-7	reneatable 61	nredictor variable 25

More Information

Cambridge University Press 978-1-108-41846-1 — Experimental Methods for Science and Engineering Students: An Introduction to the Analysis and Presentation of Data 2nd Edition Les Kirkup Index

Index 223

prefixes, 11	response variable, 26	illustration of application,
preliminary experiment, 3	rise, 38	169
Prezi, 166	rounding numbers, 17	LibreOffice, 168
principle of maximum	run, 38	LINEST function, 176
likelihood, 113		MAX function, 176
probability distribution	S	MIN function, 176
normal, 94	estimate of population	non-linear least squares, 182
Poisson, 104	standard deviation, 97	statistical functions, 175
t, 100, 198	safety, 3	STDEV.S function, 176
propagation of uncertainties,	sample, 97	transferring data, 182
74	scatter plots, 24	visualising data, 179
where errors are uncorrelated,	scientific notation, 13, 18, 66	what if calculations, 181
101, 200	examples, 20	<i>x</i> – <i>y</i> graph, 180
	scientific reports, 139	SSR, 113
quantities	SciGen Technologies Poster	standard deviation, 85-88, 119
continuous, 103	Genius, 161	of points about a line of best
discrete, 103	selection and rejection of data,	fit, 119
,	81	population, 96
r, 129	sensor, 185	standard error
random errors, 73, 85	SI	in intercept, 119
some causes, 73	derived units, 10	in intercept (weighted), 123
range, 65	fundamental units, 10	in slope, 119
reading uncertainty, 62	prefixes, 11	in slope (weighted), 122
references, 147, 220	SI system, 10	standard error of the mean,
citing, 147	SI units, 10	88–89, 97
repeatable measurements, 61	signal conditioning, 186–187	statistics
report writing, 139	significant figures, 15, 17	quantifying variability
overview, 139	and scientific notation, 18	caused by random
reports,	rules, 18	errors, 85
abstract, 143	Skypaw, 195	sum of squares of residuals, 113
acknowledgements, 147	slope, 34, 37, 40	systematic and random errors,
acronyms, 142	uncertainty, 41	70–74
appendices, 149	weighted, 122	systematic error, 63
background theory, 145	slope of best line through x – y	systematic errors
choice of tense, 142	data, 114	caused by instruments, 73
conclusion, 147	smart sensor, 186	caused by mistruments, 75
discussion, 146	smartphone, 87, 194–195	tables
example, 153–160	Solver, 183	containing data, 12
introduction, 144	spreadsheets, 168–184	tabulation of data, 12
map to aid report	active cell, 172	t distribution, 100, 198
preparation, 150	alternatives, 184	thermoelectric generator, 180,
materials and methods, 145	*	191
	Apache OpenOffice, 168 array functions, 176	transducers, 185–187
planning, 149 preparation aid, 149	AVERAGE function, 176	examples, 187
references, 147	basics, 169	transforming equations
results, 146	calculations involving	
sections, 143	columns of data, 170	to the form $y = mx + c$, $43-47$
section of a map, 151	cells, 169	Trendline, 176
sentence length, 142	CORREL function, 175	true value, 60, 68
stages of report writing, 149	example using statistical	
structure, 141	functions, 175	uncertainties
use of English, 141	Excel, 168	what are they?, 59
residuals, 113	FILL command, 172	uncertainties in slope and
resolution uncertainty, 62	histogram, 179	intercept, 41

Cambridge University Press
978-1-108-41846-1 — Experimental Methods for Science and Engineering Students:
An Introduction to the Analysis and Presentation of Data 2nd Edition
Les Kirkup
Index
More Information

224 Index

uncertainty, 6, 14, 59
absolute, 67
combining when errors are
uncorrelated, 101
due to calibration, 62
due to reading, 62
due to resolution, 62
estimating using statistics, 85
fractional, 67
how it differs from error, 61
how to quote, 66
in best estimate, 64, 90

in single measurement, 61-63 in values obtained through measurement, 14 percentage, 67 review, 100 units, 9 of slope and intercept, 40 prefixes, 11

value of a quantity how to quote, 66 variable
dependent, 26
independent, 25
predictor, 25
response, 26
variance, 87
variance and standard
deviation, 85
Vernier, 191

'what if' calculations using a spreadsheet, 181