

More Information

Index

Abalone Alliance, 191 in US, 190-193 Yucca Mountain nuclear waste repository acid mine drainage (AMD), 214 acute radiation syndrome (ARS), 156-157 and, 216-217 AEC. See Atomic Energy Commission anxiety. See nuclear anxiety Africa. See also Ghana; South Africa; arms treaties. See Nuclear Non-Proliferation sub-Saharan Africa Treaty; nuclear weapons nuclear reactor construction in, 25 ARS. See acute radiation syndrome Agreed Framework Agreement, 330 Aston, Francis, 34-35 air pollution, 16-20. See also clean air laws atomic bombs. See nuclear weapons in China, 16-17, 263 atomic energy, 66. See also nuclear energy and WHO statistics on, 16-17 power under Clean Air Act, 17-18 Atomic Energy Act, 97, 104, 107-108, under clean air laws, 18 112-113, 301 from coal use, 4 Atomic Energy Commission (AEC), 38, 101-104 in developing countries, 17, 18-19 establishment history of, 104-107 from fossil fuels, 2 nuclear reactor design guidelines, 105-106 Great Killer Smog of 1952, 4 scientific community's loss of confidence health risks from, 2 in 104 in India, 17 Atomic Energy Research Establishment, 45 atomic theory. See also radiation in Turkey, 266 Akhromeyev, Sergei, 318 critical mass, 73 Alexievich, Svetlana, 159 half-life period in, 66 alpha radiation, 65, 119 isotopes in, 68 AMD. See acid mine drainage in nuclear weapons, 72-73 anti-nuclear movement neutrons in, 68, 69 in Bodega Bay, 187-190 nuclear energy through, 64-68 in China, 201-202 nuclear fission in, 70-71 early manifesto of, 192 protons in, 67 in Europe, 193-196 radioactivity and, 64, 66 in France, 194-195 definitions of, 71 in Germany, 194-195 Rutherford and, 32-33, 64-68 in Great Britain, 195 uranium radiation and, 65 media coverage of, 193 Atoms for Peace (Woodbury), 101–103 national organizations in, 191, 193 Atoms for Peace program, 46, 102-103 nuclear anxiety as foundation of, 181-187 Atoms for Peace speech, 107 societal influences on, 209-210 Attlee, Clement, 44

Index

More Information

364 Index

Baker, Carolyn, 293-294 CEFR. See China Experimental Fast Reactor El Baradei, Mohamed, 344-345 Central and South Asia, nuclear reactor Baruch, Bernard, 38-39 construction in, 25 Baruch Plan, 38-39 Cesium, 129-130 BEAR 1. See Biological Effects of Atomic Chadwick, James, 68 Radiation: A Report to the Public Charles (Prince of Wales), 288-289 Becquerel, Henri, 64 Chernobyl nuclear accident, 145-149 becquerels, as radiation measurement, 123-126 cause of 146 Ben-Gurion, David, 46 human error as, 148-149 contamination area after, size of, 213 Bessmertnykh, Alexander, 318 beta radiation, 65, 120 European radiation levels as result of, Bhabha, Homi, 323-324 158-159 fatalities as result of, 156-158 Bhopal accident, 211-212 Bhutto, Benazir, 330 Fukushima accident compared to, 149-150 Bhutto, Zulfikar Ali, 328-329 international evaluation of, 146 bin Rashid Al Maktoum, Mohammed (Sheik), lessons learned from, 166-167 299-300 nuclear anxiety as result of, 199 bin Zayed Al Nahyan, Abdullah, 302 public health risks from, 156-160 Biological Effects of Atomic Radiation: for ARS, 156-157 A Report to the Public (BEAR 1), for mental health, 159-160 182-184, 197 public perceptions about, 144-145 limitations of, 185-187 RBMK reactor design, 147-148 birth defects, from radiation, 132, 185-186 Soviet propaganda about, 147 Blix, Hans, 312 Chicago Pile-1 (CP-1) reactor, 96-97 Bodega Bay protests, 187-190 China boiling water reactor (BWR) design, for air pollution in, 16-17, 263 nuclear reactors, 91-92 WHO statistics on, 16-17 clean air laws in, 19 water contamination in, 224 coal use in, 2, 12-13 BOO approach. See build-own-operate approach nuclear energy and power in, 13-14, Brandt, Willy, 341 263-265, 357 Brangham, William, 292-293 long-term power generation goals for, 265 Brezinski, Zbigniew, 57 public protests against, 201-202 Bromet, Evelyn, 160 nuclear reactor design in, 263-264 Brown, Edmund (Pat), 189 CEFR reactors, 264 Buck, Ken, 287 SCR reactors, 264 build-own-operate (BOO) approach, 262 SMR reactors, 264 Bush, Vannevar, 35 nuclear weapons program in, 47-48, 50 BWR design. See boiling water reactor design China Experimental Fast Reactor (CEFR), 264 Byrnes, James, 35 China Syndrome (film), 193 "China Syndrome" (term), 193 Canada Natural Uranium Deuterium cities. See urbanization (CANDU), 89 Clamshell Alliance, 191-193 cancer, radiation and, 177-178 Clean Air Act, 17-18 CANDU. See Canada Natural Uranium clean air laws, 18 Deuterium in China, 19 carbon energy, sources of, 1-2. See also coal in India, 19 use; oil production; petroleum clean coal, 19-20 climate change from, 5-6, 282-285 climate change, 20-23 Carson, Rachel, 176-177 from carbon energy use, 5-6, 282-285 Carter, Jimmy, 260 from coal use, 23

More Information

s factor i
s factor i
, 17,
, .,
8
in Europ
_
162-163
-140
85-187,
50–151
50–151,
150–151, and,
ınd,

More Information

Einstein, Albert, 33, 358–362	fear of corporate greed as factor in, 191-192
Eisenhower, Dwight D., 107	national organizations in, 191, 193
nuclear energy development under, 108-109	Environmental Protection Agency (EPA),
electricity production	130–131
coal use	Yucca Mountain nuclear waste guidelines,
as default energy source after electricity,	216–217
254–255	Europe. See also United Kingdom
in generation of, 3–4	anti-nuclear movement in, 193-196
global demand for, 253-255	nuclear energy in, early development of, 100
historical development of, 3–4	nuclear reactor construction in, 25
through hydropower structures, 219–220	radiation levels in, from Chernobyl nuclear
through liquid petroleum, 106	accident, 158-159
through nuclear energy, 104-110	Experimental Breeder Reactor-1 (EBR-1),
in UAE, 298–299	107–108, 116
Emirates Nuclear Energy Corporation (ENEC),	
303, 309–314	FANR. See Federal Authority for Nuclear
emissions reductions	Regulation
Energiewende plan, 251–252	FAO. See Food and Agricultural Organization
with nuclear energy, 232–233	fast electrons, 120
ENCD. See Eighteen Nation Committee on	fast neutron reactor (FNR) design, for nuclear
Disarmament	reactors, 92–93
ENEC. See Emirates Nuclear Energy	Fat Man bomb, 74
Corporation	The Fate of the Earth (Schell), 198–199
Energiewende (Energy Shift) plan, 251–252	Federal Authority for Nuclear Regulation
energy crisis	(FANR), 303, 309–314
climate change and, 2	Fermi, Enrico, 33, 69, 74–75
existential nature of, 1–2	early nuclear reactor designed by, 96–97
fossil fuels and, 1–2	Finland, nuclear waste repository in,
political responses to, 260	86–87
energy policies	fission. See nuclear fission
economic policies as factor in, 232–233, 234	floods, from climate change, 286
energy sources and, absolutist perceptions	FNR design. See fast neutron reactor design
of, 238–239	FOE. See Friends of the Earth
for renewable energies, 238	Food and Agricultural Organization (FAO),
in Germany, 251–252	124–125
energy production, historical development of	Ford, Henry, 281
energy production, historical development of, 3–7	forest loss, climate change as factor in, 287–288
coal use, 3	fossil fuels. <i>See also</i> coal use; oil production;
for electricity, 3–4	petroleum
for nuclear power, 6–7	energy crisis and, 1–2
for oil production, 3	health risks from, 2
energy realism, 246	France
energy security, 259–262	anti-nuclear movement in, 194–195
in Turkey, 266	nuclear reactors in, 114
Energy Shift plan. See Energiewende plan	reduction of, as national policy, 259
energy trends, 244–246. <i>See also</i> renewable	nuclear weapons program in, 45
energies	Friedman, Thomas L., 293
forecasts of, 245–246	Friends of the Earth (FOE), 191
ensemble forecasting, 249	Frisch, Otto, 70–71, 94. <i>See also</i> atomic theory
environmental movement, 176–177	nuclear fission and, 70–71
_	

More Information

fuel cycle, for nuclear reactors, 81-84	Grae, Seth, 303
closing of, 81	Great Britain
decay heat in, 83	anti-nuclear movement in, 195
once-through, 81	nuclear energy in, early years of, 98
recycling in, 81-83	nuclear power plants in, 98
reprocessing in, 81-83	Great Killer Smog of 1952, 4, 17
Fukushima nuclear accident, 9, 149-156	green energy revolution, 252
assessment studies of, 160-161	greenhouse gases (GHGs), 22, 23
causes of, 150-153	Greenpeace, 191
earthquake as, 150-151, 152	Groves, Leslie, 35
tsunami as, 152-153	
Chernobyl accident compared to, 149-150	Hahn, Otto, 33, 66-67, 69-71, 72. See also
contamination area after, size of, 213	atomic theory
decommissioning of nuclear reactors after,	half-life period, 66
11–12	Al Hammadi, Mohamed, 307
government response to, 154-156, 164-165	Harmony (Prince Charles), 288-289
health risks after, 160-166	health risks
mental, 165-166	air pollution as, 2
industries affected by, 164	from coal use, 4, 359
lessons learned from, 166-167	nuclear anxiety in comparison to, 178-180
media coverage of, 166	from fossil fuels, 2
public perceptions about, 144-145	health risks, from radiation
radiation doses after, 162	birth defects and, 132, 185-186
Fuller, R. Buckminster, 140	cancer and, 177-178
	after Chernobyl nuclear accident, 156-160
gamma radiation, 65, 120	for ARS, 156–157
Gandhi, Indira, 324–325	for mental health, 159-160
Gandhi, Rajiv, 325	effective doses of, measurement of,
gas-cooled reactor (GCR) design, for nuclear	125–126, 130–132
reactors, 92	after Fukushima nuclear accident, 160-166
Geiger, Hans, 67	mental health assessments, 165-166
geologic disposal, of nuclear waste, 86	in LSS, 131–132
geothermal energy, 254	nuclear anxiety as result of, 177-178
Germany	from radium exposure, 34
anti-nuclear movement in, 194-195	from radon, 130–131
renewable energy policies in, 251-252	sterility, in males, 185-186
Ghana	heavy water reactor (HWR) design, for nuclear
energy needs in, 269-272	reactors, 89
energy resources in, 270	Herter, Christian, 50
hydroelectric power in, 270	highly enriched uranium (HEU)
shortages of, 270-271	in LWR reactors, 112
natural gas reserves in, 270–271	in nuclear reactors, 79
nuclear energy and power in, 271-272	in nuclear weapons, 72–73
renewable energy use goals in, 271	in South Africa, 327
GHGs. See greenhouse gases	Hiroshima, bombing of, 42–43
glacial melt, from climate change, 287	Little Boy bomb and, 74
global warming, from climate change,	Hoover, J. Edgar, 104
285–286, 291	hormesis hypothesis, 135
speed of, 292	Hungarian Revolution, 46
Goldschmidt, Bertrand, 323–324	Hussein, Saddam, 328, 331
Gorbachev, Mikhail, 316-321	HWR design. See heavy water reactor design

More Information

368 Index

hydroelectric power International Energy Agency (IEA), 11-12 through dams International System of Units (SI), 123 inverse square law, 120-121 lifespan of, 219-220 structural failure of, 220 iodine. See radioactive iodine in Ghana, 270 ionizing radiation, 119 as renewable energy source, 247 IPCC. See Intergovernmental Panel on Climate efficiency of, 248 Change Iran, nuclear weapons program in, 331 IAB. See International Advisory Board Iraq, nuclear weapons program in, 328 IAEA. See International Atomic Energy Irish Resolution, 51 Agency ISL. See In-Situ Leaching Ickes, Harold, 100 isotopes ICRP. See International Commission on in atomic theory, 68 Radiological Protection in nuclear weapons, 72-73 radiation and, 128 IEA. See International Energy Agency ILW. See intermediate-level waste implosion design, in nuclear weapons, 74 nuclear weapons program in, 46-47 India Six-Day War and, 47 "Ivy Mike" test, 39-40 air pollution in, 17 clean air laws in, 19 Japan. See also Fukushima nuclear accident nuclear energy in, 357 nuclear weapons program in, 49, 53, Hiroshima, bombing of, 42-43 Little Boy bomb and, 74 323-326 political parties as influence on, 325 Nagasaki, bombing of, 42-43 secrecy of, 324 Fat Man bomb, 74 radiation dangers, in Kerala, 136-139 Joliot-Curie, Frederick, 69 industrial accidents Joliot-Curie, Irene, 69 Bhopal accident, 211-212 Jungk, Robert, 195-196 nuclear plant accidents compared to, 211-212 Al Kaabi, Hamad, 302-303, 308 Piper Alpha accident, 211-212 Keeling, Charles, 284-285 Texas City accident, 170-171, 211-212 Kennedy, Ernie, 303 Kennedy, John F., 50-51, 54-56 Industrial Revolution, coal use during, 3 industrial waste, nuclear waste compared to, Cold War under, 50 Cuban Missile Crisis and, 46, 50-51, 55 217-218 INF Treaty. See Intermediate Range Nuclear Kerala, radiation levels in, 136-139 Forces Treaty Khan, Abdul Qadeer, 54, 328, 329-330 In-Situ Leaching (ISL), 222-223 Khan, Feroz, 329 Intergovernmental Panel on Climate Change Khan, Munir, 329 (IPCC), 20-21, 290-291 killer smogs, 4, 17 Intermediate Range Nuclear Forces (INF) Kim Il Sung, 330 Korean War, 182 Treaty, 318 intermediate-level waste (ILW), 85 Kovalenko, Zinaida, 159 International Advisory Board (IAB), 304-309 Krepon, Michael, 316-317 international members of, 305-306 International Atomic Energy Agency (IAEA), Lawrence, Ernest, 69 LCOE. See levelized cost of electricity NPT and, 332-333 LEU. See low enriched uranium nuclear reactors and, 79 levelized cost of electricity (LCOE), 228 International Commission on Radiological LFTR design. See liquid fluoride thorium Protection (ICRP), 135, 164 reactor design

Cambridge University Press

978-1-108-41822-5 — Seeing the Light: The Case for Nuclear Power in the 21st Century

Scott L. Montgomery, Thomas Graham, Jr

Index

More Information

Libya, nuclear weapons program in, 328	after Chernobyl nuclear accident, 159-160
Life Span Study (LSS), 131–132	after Fukushima nuclear accident, 165-166
light water reactor (LWR) design, for nuclear	Messmer, Pierre, 114
reactors, 77-78, 89, 95-96, 111-115	Messmer Plan, 114
fuel sources for, 115	Middle East, nuclear reactor construction in, 25
as global standard, 114	mining
HEU in, 112	nickel, 223
limitations of, 115	uranium
nuclear waste from, 215	methods of, 221–222
Lilienthal, David, 101	nuclear waste from, 220-224
Limited Test Ban Treaty, 54-56, 58	molten salt reactor (MSR) design, for nuclear
historical development of, 55-56	reactors, 93–94
linear no-threshold (LNT) hypothesis,	LFTR type of, 93–94
133–136, 139–140	Molten Salt Reactor Experiment (MSRE),
BEAR 1 report and, 182-184, 197	116–117
limitations of, 185–187	Mooney, Chris, 292
liquid fluoride thorium reactor (LFTR) design,	MSR design. See molten salt reactor design
for nuclear reactors, 93-94	MSRE. See Molten Salt Reactor Experiment
liquid metal fast breeder, 93	mSv. See Sievert measuring system
liquid petroleum. See petroleum	MTR. See megawatt materials testing reactor
Little Boy bomb, 74	Muller, Hermann, 133-136, 183
LLW. See low-level waste	
LNT hypothesis. See linear no-threshold	Nagasaki, bombing of, 42-43
hypothesis	Fat Man bomb, 74
Lovins, Amory, 192	Nasser, Gamal, 46–47
low enriched uranium (LEU), in nuclear	National Cancer Act of 1971, 177
reactors, 79	National Renewable Energy Laboratory
Lowe, William Web, II, 284–285	(NREL), 249
low-level waste (LLW), 84	national repositories, for nuclear
LSS. See Life Span Study	waste, 86–89
Lucky Dragon incident, 39-40, 54, 181,	natural gas
182–183	in Ghana, 270–271
LWR design. See light water reactor design	as low-carbon fuel source, 27-28
	nuclear power and, 8, 231
MacMillan, Harold, 55	in Turkey, 266
Mainau Declaration, 1, 7	Natural Resources Defense Council, 193
The Making of the Atomic Bomb (Rhodes), 32	Nautilus nuclear submarine, 109–110
Manhattan Project, 32, 35–37	Nehru, Jawaharlal, 323–324
Mao Tse-Tung, 47–48	neutrons, 68, 69
Mao Zedong, 50	in radiation, 120
Marine, Gene, 103	nickel mining, 223
Marsden, Ernest, 67	Nitze, Paul, 318
Maslin, Mark, 293–294	Nkrumah, Kwame, 270
McPherson, Guy, 293–294	noncarbon energy, 272–273. See also nuclear
Medvedev, Dmitry, 286	energy and power; renewable energies
megawatt materials testing reactor (MTR), 328	future applications of, 358-362
Meitner, Lise, 33, 69, 70-71, 72, 94. See also	non-ionizing radiation, 119
atomic theory	NORAD. See North American Aerospace
nuclear fission and, 70-71	Defense
Mendès-France, Pierre, 45	Normal Accidents: Living with High-Risk
mental health, assessment of	Technologies (Perrow), 168–170

More Information

Cambridge University Press 978-1-108-41822-5 — Seeing the Light: The Case for Nuclear Power in the 21st Century Scott L. Montgomery , Thomas Graham, Jr Index

370 Index

North American Aerospace Defense historical development of, 55-56 (NORAD), 57 post-war legacy of, 56-58 under Reagan, 316-321 North Korea, nuclear weapons program in, 49, 330-331 under START, 318 NPT. See Nuclear Non-Proliferation Treaty nuclear energy and power. See also nuclear NREL. See National Renewable Energy power plants; nuclear waste Laboratory absolutist perceptions of, as negative type, NSG. See Nuclear Suppliers Group 238-239 nuclear anxiety. See also Chernobyl nuclear under Atomic Energy Act, 97 accident; Fukushima nuclear accident; through atomic theory, 64-68 Hiroshima; Nagasaki Baruch Plan and, 38-39 BEAR 1 report and, 182-184, 197 BEAR 1 report and, 182-184, 197 limitations of, 185-187 limitations of, 185-187 in China, 13-14, 263-265, 357 in China, 201-202 "China Syndrome" and, 193 long-term power generation goals for, 265 common terms for, 176 public protests against, 201-202 environmental movement and, 176-177 complexity of, 10 as global phenomenon, 200-202 corporate greed and, 191-192 health risks from radiation as part of, costs of, 227-235 177-178 cost of capital, 228-229 historical context for, 174-178 historical records for, 227-230 historical development of, 174-178 LCOE in, 228 from institutional mistrust, 202-203 early years of, 97-104 in literature, 175, 176-177 public support during, 101-104 long-term consequences of, 202-205 in Soviet Union, 98 misinformation as factor for, 204-205 in UK, 98 in modern era, 196-200 in United States, 108-109 nuclear risks and, proportionality of, electricity generation through, 104-110 178 - 181emissions reduction for, 232-233 coal use and, health risks from, 178-180 environmental groups against, 191 myths about, 237-238 in Europe, 100 public perception as influence on, flexibility of, 10 175 - 176in Ghana, 271-272 over nuclear energy, 356-357 as growth industry, 8, 24-26 over nuclear waste, 180 through increased plant construction, political implications of, 191-192 10-11, 24-25 public perception of, 178-181 in new era, 10-15 Hahn and, 69-71 public protests as result of, 181-187 radiophobia and, 140, 175, 203-204 historical development of, 6-7, 69-71 as rational fear, 177 historical economic trends for, 230-235 terrorism and, 198 deregulation of industry, 231-232 after TMI nuclear accident, 168-170, national economic policies, 232-233, 234 196-197 in India, 357 nuclear arms race, 43-49 licensing processes for, 15 during Cold War, 43-44, 50 limitations of Cuban Missile Crisis and, 46, 50-51, 55 cost as, 355 public anxiety fears as, 356-357 false alarms during, 57 global expansion of, 44-48 in literature, 101-103 under Gorbachev, 316-321 under Mainau Declaration, 7 under INF Treaty, 318 military applications of, 100-101. See also Limited Test Ban Treaty during, 54-56, 58 nuclear weapons

More Information

in modern era, 255–259	CTBT elements of, 337
as essential source of energy, 10, 354–355,	destabilization of, 349
358–362	ENCD and, 51-52
national economic policies for, 232-233, 234	establishment of, 332-333
national share of power generation, 257-258	future issues with, 340-348
natural gas and, 8, 231	goals of, 52-53
nuclear weapons and, 32-33	historical development of, 50-54, 197-198
123 Agreements on, 25-26, 301	IAEA and, 332–333
political implications of, 191-192	international advisory committee for,
public perception of, 59, 60	335–336
public protests over, 181–187	Irish Resolution, 51
in Bodega Bay, 187-190	NSG and, 53-54, 344-345, 346, 347-348
reduction policies for, national strategies for,	nuclear reactors under, 79
258–259	nuclear weapons and, 25, 45, 49-56
in France, 259	Review Conferences for, 333–337
risk perception of, nuclear anxiety from,	rights under, 342-343
175–176	Trigger List and, 345, 347
in Russia, as monopoly, 261-262, 357	UAE under, 308
BOO approach, 262	nuclear physics, 32–33
as technological authoritarianism, 192-193	nuclear plant accidents. See also Chernobyl
technological issues with, 350-351	nuclear accident; Fukushima nuclear
in Turkey, 267–269	accident; Three Mile Island nuclear
in UAE, 299, 350	accident
international cooperation agreement for,	brown-out phase for new plant construction
302–305	after, 255–256
political implications of, 299-301	contamination areas, 212-214
safety policies for, 309-314	historical record of, 211
state rationale for, 297-299	industrial accidents compared to, 211-212
US involvement in, 300-301	contamination areas of, 213-214
in United States	"normal," 168–170
early years of, 108-109	nuclear power plants. See also Chernobyl
under Eisenhower, 108-109	nuclear accident; Fukushima nuclear
variety of technologies for, 10	accident; nuclear waste
Nuclear Era, 35–37	brown-out phase in construction of, 255-256
nuclear fission, 70-71	earthquake risks for, 188-189
in nuclear reactors, 74-77, 235-237	Fukushima nuclear accident and,
in nuclear weapons, 235-237	150–151, 152
nuclear fuel, 75, 78-84. See also nuclear waste	expanded construction of, 256-257
assembly for, 80-81	in Great Britain, 98–99
cladding of, 79–80	life span of, 218–220
HEU, 79	normal accidents at, 168-170
LEU, 79	public protests against, 187-190
recycling of, 81–83	in Soviet Union, 98
reprocessing of, 81-83	in United States, 99-100
rods, 79–80	nuclear reactor design, 89-94
yellowcake, 78–79	under AEC, 105–106
Nuclear Non-Proliferation Treaty (NPT),	BWR type, 91–92
332–348	water contamination in, 224
affirmation of, 347	Chernobyl nuclear accident caused by,
Articles of, treaty obligations under,	147–148
333–335	in China, 263–264

1 1 1 1 1 1 1	1 NET 70
nuclear reactor design (cont.)	under NPT, 79
CEFR reactors, 264	nuclear weapons and, public perception of
SCR reactors, 264	links between, 235–237
SMR reactors, 264	physics of, 74–78
EBR-1, 107–108, 116	control of fission, 74–77
expanded construction of, 256–257	through controlled reactions, 72
FNR type, 92–93	moderators, 76–77
GCR type, 92	in modern reactors, 77–78
HWR type, 89	plutonium in, 236–237
liquid metal fast breeder in, 93	under Price-Anderson Act, 112–113
LWR type, 77–78, 89, 95–96, 111–115	RPV in, 80–81
fuel sources for, 115	technology improvements in, 28
as global standard, 114	in UAE, 304
HEU in, 112	The Nuclear State: Progress in Inhumanity
limitations of, 115	(Jungk), 195–196
waste disposal with, 215	Nuclear Suppliers Group (NSG), 53–54,
MSR type, 93–94	344–345, 346, 347–348
LFTR type of, 93–94	nuclear waste, 84–89, 214–218
MSRE type, 116–117	BEAR 1 report and, 182–184, 197
MTR type, 328	limitations of, 185–187
PRDP for, 106, 109, 112–113	disposal of, 86–89
PWR type, 91–92, 109–110, 113	in commercial international site, 88
under Messmer Plan, 114	geologic, 86
water contamination in, 226	in national repositories, 86–89
RBMK type, 147–148	historical record of, 214–215
SCR type, 93, 264	from HLW reactors, 85
SMR type, 91	from ILW reactors, 85
technology for, global leaders in, 258	industrial waste compared to, 217–218
nuclear reactors. See also atomic theory;	from LLW reactors, 84
nuclear fuel; nuclear waste	from LWR reactors, 215
construction costs for, 113-114	public anxiety of, 180
decommissioning of, 11–12	from uranium mining, 220–224
after Fukushima accident, 11-12	historical record for, 221–223
early, 95–97	ISL and, 222–223
CP-1, 96–97	mining waste from industries compared
Fermi and, 96–97	to, 223–224
at Oklo uranium mine, 95	water contamination from, 224–227
EBR-1, 107–108, 116	in BWR systems, 224
fission process in, 235–237	in closed-loop systems, 226
in France, 114	dry cooling and, 226
reduction of, as national policy, 259	in once-through systems, 226
fuel cycle for, 81–84	in PWR systems, 225
closing of, 81	Yucca Mountain waste repository, 88–89,
decay heat in, 83	215–217
once-through, 81	EPA radiation standards for, 216–217
recycling in, 81–83	public protests against, 216-217
reprocessing in, 81-83	Nuclear Waste Policy Act, 216
IAEA and, 79	nuclear weapons. See also atomic theory;
increased construction of, 10-11, 24-25	nuclear arms race
by region, 25	bans on, 49-56. See also Intermediate Rang
MSRE, 116–117	Nuclear Forces Treaty; Limited Test

More Information

Don Treatry Mysleon Non Bushipmetica	fallout from 12, 12
Ban Treaty; Nuclear Non-Proliferation	fallout from, 42–43 "Ivy Mike," 39–40
Treaty; Strategic Arms Reduction Treaty	Trinity test, 38
BEAR 1 report and, 182–184, 197	Trinity test, 38
limitations of, 185–187	in UK, 44–45
in China, 47–48, 50	uranium and, 35
after Cold War, 322–323	HEU, 72–73
under CTBT, 337	in US
Fat Man bomb, 74	after Cold War, 322–323
fission process in, 235–237	during Cold War, 43–44, 50
in France, 45	"Ivy Mike" test, 39–40
global security issues over, 360	Manhattan Project, 32, 35–37
Hiroshima bombing, 42–43	Mannattan 1 Toject, 32, 33 37
historical development of, 32–37	oil production, historical development of, 3
political motivations in, 48–49	Oklo uranium mine, 95
implosion design in, 74	once-through fuel cycle, 81
in India, 49, 53, 323–326	water contamination from, 226
political parties as influence on, 325	123 Agreements, on nuclear power, 25–26, 301
secrecy of weapons program, 324	Oppenheimer, J. Robert, 32, 35, 103, 182–183
in Iran, 331	Oppenheimer, Michael, 292
in Iraq, 328	Otaiba, Yusuf, 301
in Israel, 46–47	otaloa, Tasai, 501
in Libya, 328	Pachauri, Rajendra, 290
Little Boy bomb, 74	Pakistan, nuclear weapons program in, 49, 54,
Manhattan Project, 32, 35–37	328–330
as moral necessity, 36	Paleocene–Eocene Thermal Maximum
Nagasaki bombing, 42–43	(PETM), 22
Nautilus nuclear submarine and, 109–110	Paris Agreement on Climate Change, 6, 286,
in North Korea, 49, 330–331	288–289
NPT and, 25, 45, 49–56	Pauling, Linus, 185
nuclear power and, 32–33	Perle, Richard, 318–319
nuclear reactors and, public perception of	Perrow, Charles, 168–170
links between, 235–237	Pesonen, David, 189
in Pakistan, 49, 54, 328-330	PETM. See Paleocene–Eocene Thermal
physics of, 71–74	Maximum
critical mass, 73	petroleum, liquid. See also oil production
HEU, 72–73	electricity production through, 106
isotopes, 72–73	historical development of, as energy source,
plutonium in, 236–237	281
proliferation of, 37–43	Petrov, Stanislav, 57
radium dangers with, 34	photons, 67
Smyth Report on, 37–38	Piper Alpha accident, 211–212
in South Africa, 49, 326–327	plutonium, 236–237
with HEU, 327	as terrorist tool, 237
in Soviet Union, 40-41	Power Reactor Development Program (PRDP),
after Cold War, 322-323	106, 109, 112–113
during Cold War, 43–44, 50	pressurized water reactor (PWR) design, for
in Sweden, 45	nuclear reactors, 91–92, 109–110, 113
in Switzerland, 46	Messmer Plan for, 114
in Syria, 328	water contamination in, 226
testing of, 41–43	Price-Anderson Act, 112–113

protests. See anti-nuclear movement	radioactive iodine, 129
protons, 67	radioactivity
Putin, Vladimir, 316–317	in atomic theory, 64, 66
PWR design. See pressurized water reactor	definitions of, 71
design	decay heat and, 83
	radiophobia, 140, 175, 203-204
radiation, 65-67. See also health risks, from	radium, 34
radiation	radon, 130–131
alpha particles, 65, 119	reactor bolshoy moshchnosty kanalny (RBMK)
beta particles, 65, 120	reactor design, 147-148
biological risks from, 139-140	reactor pressure vessel (RPV), 80-81
Cesium and, 129–130	reactors. See nuclear reactors
cosmic, 126	READ system, for radiation measurement,
defined, 119-121	122–123
effects of, variability in, 127-130	Reagan, Ronald, 316-321
by isotope type, 128	SDI and, 317, 318
fast electrons, 120	recycling nuclear fuel, 81-83
food and, limit guidelines for, 124-125	Reid, Harry, 88, 216-217
gamma rays, 65, 120	renewable energies, 238, 247-253
in humans, effective doses of, 125-126	absolutist perceptions of, as beneficial type,
EPA guidelines for, 130-131	238–239
hormesis hypothesis for, 135	capital costs for, 250-251
LNT hypothesis for, 133-136, 139-140,	curtailment approach to, 250
182–184	development issues for, 250-251
LSS for, 131–132	in Germany, 251–252
inverse square law for, 120-121	in Ghana, future goals for, 271
iodine and, 129	green energy revolution and, 252
ionizing, 119	hydroelectric power as, 247
after Lucky Dragon incident, 39-40, 54, 181,	efficiency of, 248
182–183	integration of, 250–251
from man-made backgrounds, 127	solar and wind power
measurement of, 122-127	energy production predictability with, 249
with becquerels, 123–126	equipment degradation with, 248-249
with mSv, 123–126	reprocessing of nuclear fuel, 81–83
READ system, 122–123	"return to coal" movement, 272–273
with SI, 123	Rhodes, Richard, 32, 321
from natural backgrounds, 121-122, 126-127	Rice, Condoleezza, 302
in Kerala, 136–139	Rickover, Hyman, 99, 100. See also Nautilus
neutrons and, 120	nuclear submarine
non-ionizing, 119	Ridgway, Rozanne, 318
photons and, 67	The Rise of Nuclear Fear (Weart), 175
radiophobia and, 140, 175, 203-204	RBMK reactor design. See reactor bolshoy
sources of, 121–122	moshchnosty kanalny reactor design
from man-made backgrounds, 127	Ros-Lehtinen, Ileana, 302
from natural backgrounds, 121–122,	RPV. See reactor pressure vessel
126–127	Russia. See also Soviet Union
Strontium and, 130	extreme heat waves in, 286
uranium and, 65	nuclear energy monopoly in, 261–262, 357
x-rays, 120	BOO approach, 262
Radiation Exposure Compensation Act, 186	Rutherford, Ernest, 32–33, 64–68, 94. See also
radiation studies, 131–132	atomic theory

Cambridge University Press

978-1-108-41822-5 — Seeing the Light: The Case for Nuclear Power in the 21st Century

Scott L. Montgomery, Thomas Graham, Jr

Indox

More Information

Index 375

Sachs, Alexander, 33	nuclear energy in, early years of, 98
Sakharov, Andrei, 41	nuclear power plants in, 98
Schell, Jonathan, 198-199	nuclear weapons program in, 40-41
Scherer, Glenn, 292	after Cold War, 322-323
SFR design. See sodium-cooled fast reactor	during Cold War, 43-44, 50
design	uranium resources, 35
SDI. See Strategic Defense Initiative	START. See Strategic Arms Reduction Treaty
sea level rise, from climate change, 287,	sterility, from radiation, 185-186
291–292	Stimson, Henry, 35
Seaborg, Glenn, 343	Strassmann, Fritz, 69
Shaker, Mohamed I., 52	Strategic Arms Reduction Treaty (START), 318
Shastri, Bahadur, 324	Strategic Defense Initiative (SDI), 317, 318
Shevardnadze, Eduard, 318	Strauss, Lewis, 104, 106-107, 182-183, 185
Shippingport nuclear reactor, 99–100	Strontium, 130
Shultz, George, 317	sub-Saharan Africa. See also Ghana
SI. See International System of Units	energy deficits in, 269
Sierra Club, 193	energy sources in, 269-270
Sievert (mSv) measuring system, 123-126	Sweden
Silent Spring (Carson), 176-177	nuclear waste repository in, 87
Six-Day War, 47	nuclear weapons program in, 45
Slotin, Louis, 187	Switzerland, nuclear weapons program in, 46
Slovic, Paul, 175–176	Syria, nuclear weapons program in, 328
slow neutrons, 69	Szilárd, Leó, 33–34
small modular reactors (SMRs), 264	
smog, from coal use, 4, 17	technological authoritarianism, 192-193
SMRs. See small modular reactors	Teller, Edward, 33, 182
Smyth, Henry D., 37–38	temperature increases. See global warming
Soddy, Frederick, 65-66, 68	Tenet, George, 330
sodium-cooled fast reactor (SFR) design, for	terrorism
nuclear reactors, 93	nuclear anxiety and, 198
in China, 264	plutonium possession and, 237
solar power	Texas City accident, 170-171, 211-212
energy production predictability with, 249	thermal neutrons, 69
equipment degradation with, 248–249	Thorsson, Inga, 333–334
Sorensen, Ted, 55–56	Three Mile Island (TMI) nuclear accident,
South Africa, nuclear weapons program in, 49,	168–170, 196–197
326–327	3/11. See Fukushima nuclear accident
with HEU, 327	TMI nuclear accident. See Three Mile Island
South America, nuclear reactor construction in,	nuclear accident
25	Travers, Williams, 306
South Korea, nuclear waste repository in,	Trigger List, NPT and, 345, 347
87–88	Trinity test, 38
Soviet Union	Turkey
Chernobyl nuclear accident and, propaganda about, 147	air pollution in, 266 energy consumption in, 265–269
Cuban Missile Crisis and, 46, 50–51, 55	energy resources in, 265–266
false alarms about nuclear attacks against, 57	natural gas reserves, 266
INF Treaty and, 318	uranium, 267
Limited Test Ban Treaty and, 54-56, 58	energy security in, 266

historical development of, 55–56

Lucky Dragon incident, 39-40, 54

nuclear energy and power in, development

of, 267-269

More Information

UAE. See United Arab Emirates	nuclear power plants in, 99–100
UCS. See Union of Concerned Scientists	Nuclear Waste Policy Act in, 216
Udall, Stewart, 189	nuclear waste repository in, 88-89
UK. See United Kingdom	nuclear weapons program in
Union of Concerned Scientists (UCS), 193	after Cold War, 322–323
United Arab Emirates (UAE)	during Cold War, 43–44, 50
electricity production in, 298-299	"Ivy Mike" test, 39–40
ENEC in, 303, 309-314	Manhattan Project, 32, 35–37
energy needs in, 298-299	123 Agreements, for nuclear power, 25–26,
FANR in, 303, 309–314	301
IAB in, 304–309	Radiation Exposure Compensation Act in,
international members of, 305-306	186
under NPT, 308	UAE nuclear energy development
nuclear energy and power in, 299, 350	influenced by, 300-301
international cooperation agreement for,	Yucca Mountain nuclear waste repository,
302–305	88-89, 215-217
political implications of, 299-301	EPA radiation standards for, 216-217
safety policies for, 309–314	public protests against, 216-217
state rationale for, 297–299	UNSCEAR. See United Nations Scientific
US involvement in, 300-301	Committee on the Effects of Atomic
nuclear reactors in, 304	Radiation
United Kingdom (UK). See also Great Britain	uranium
Atomic Energy Research Establishment in, 45	in atomic theory, 65
Limited Test Ban Treaty and, 54–56, 58	isotopes in, 68
historical development of, 55–56	as national resource, 35, 261
national energy plans in, 232	in nuclear weapons, 35
nuclear weapons in, 44–45	HEU, 72–73
United Nations Scientific Committee on the	ocean as source of, 261
Effects of Atomic Radiation	in Turkey, 267
(UNSCEAR), 135	uranium mining
United States (US)	methods of, 221–222
AEC in, 38, 101–104	nuclear waste from, 220–224
establishment history of, 104–107	historical record for, 221–223
nuclear reactor design guidelines,	ISL and, 222–223
105–106	mining waste from industries compared
scientific community's loss of confidence	to, 223–224
in, 104	urbanization
anti-nuclear movement in, 190–193	energy use trends as result of, 255
Atomic Energy Act in, 97, 104, 107–108,	global trends toward, 15
112–113, 301	US. See United States
Clean Air Act in, 17–18	OS. See Office States
coal use in, 282–283	Vanunu, Mordechai, 327
Cuban Missile Crisis and, 46, 50–51, 55	Viktorsson, Christer, 312
false alarms about nuclear attacks against, 57	Viktorsson, Christer, 312 Villard, Paul, 65
INF Treaty and, 318	Voices from Chernobyl (Alexievich), 159
	voices from Chernooyi (Alexievicii), 139
Limited Test Ban Treaty and, 54–56, 58	Warrany Pa et 46
historical development of, 55–56	Warsaw Pact, 46
National Cancer Act of 1971 in, 177	waste disposal. See nuclear waste
nuclear energy in	water contamination, from nuclear waste,
early years of, 108–109	224–227 in PWP systems, 224
under Eisenhower, 108–109	in BWR systems, 224

More Information

Index 377

in closed-loop systems, 226 dry cooling and, 226 in once-through systems, 226 in PWR systems, 225 weapons. See nuclear weapons Weart, Spencer, 175 Weinberg, Alvin, 84, 116-117, 205 Wells, H. G., 32-33, 100 Wesdahl, Chris, 335-336 WHO. See World Health Organization Wigner, Eugene, 33 wind power energy production predictability with, 249 equipment degradation with, 248-249 WNA. See World Nuclear Association Woodbury, David O., 101-103 Woodruff, Judy, 292

World Bank on Climate Change, 289 World Health Organization (WHO), on air pollution, 16–17 World Nuclear Association (WNA), 12 The World Set Free (Wells), 32–33, 100

Yankee Rowe reactor, 109–110. See also
Shippingport nuclear reactor
Yeltsin, Boris, 57
Yucca Mountain, as nuclear waste repository,
88–89, 215–217
EPA radiation standards for, 216–217
public protests against, 216–217

Zhou Enlai, 47-48, 328

x-rays, 120