

Weather: A Concise Introduction

From a world-renowned team at the Department of Atmospheric Sciences at the University of Washington, Seattle, *Weather: A Concise Introduction* is an accessible and beautifully illustrated text covering the foundations of meteorology in a concise, clear, and engaging manner. Designed to provide students with a strong foundation in the physical, dynamical, and chemical processes taking place in the atmosphere, this introductory textbook will appeal to students with a wide range of mathematical and scientific backgrounds.

This textbook provides a practical approach to the study of meteorology. It features: a single case study of a midlatitude cyclone which is referred to throughout the whole book to illustrate the basic principles driving atmospheric dynamics and phenomena; boxes on more advanced topics; appendices for additional coverage; chapter summaries listing the "take-home" points discussed; and color figures and charts clearly illustrating the fundamental concepts. Key terms are evident throughout, and a glossary explains the terms that students will need to understand and become familiar with.

Gregory J. Hakim has undergraduate degrees in Mathematics and Atmospheric Science and a PhD in Atmospheric Science from the University at Albany, State University of New York. He joined the Department of Atmospheric Sciences at the University of Washington in 1999, where he served as Department Chair from 2012 to 2017 and is currently a Professor. He is also a leading scientist in the areas of weather analysis, predictability, and dynamics, and his research interests include weather and climate prediction, hurricanes, past climates, and polar circulation patterns.

He has served on the advisory panel for the Directorate of Geosciences at the National Science Foundation, as Chair of the advisory panel for the Mesoscale and Microscale Meteorology Laboratory at the National Center for Atmospheric Research (NCAR), as a member of the NCAR Advisory Panel, as a member of the NCAR Strategic Planning Council, and as Chair of the University Corporation for Atmospheric Research's President's Advisory Committee on University Relations.

Jérôme Patoux earned a Master in Environmental Engineering from the University of Texas at Austin and a PhD in Atmospheric Science from the University of Washington. He has been funded by the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), the Office of Naval Research (ONR), and the National Oceanic and Atmospheric Administration (NOAA). He has taught undergraduate introductory meteorology for many years, and has been funded by the NSF to develop weather and climate curriculum. He is a former faculty member from the Department of Atmospheric Sciences at the University of Washington, and currently teaches meteorology at the University of Nantes in France.

WeatherA Concise Introduction

GREGORY HAKIM
University of Washington

JÉRÔME PATOUX

University of Washington

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108417167 DOI: 10.1017/9781108264983

© Gregory Hakim and Jérôme Patoux 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-41716-7 Hardback ISBN 978-1-108-40465-5 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Preface		page ix	2.3 Upper-Level Maps	25
Intr	oduction	хi		
~ 11	ADTED 1 Weather Veriables		2.4 Radar	28
CH	APTER 1 Weather Variables	1	2.5 Satellites	20
4.4	Tomporatura	4		29 30
1.1	Temperature	1 2	2.5.1 Visible Satellite Images	31
	1.1.1 Heat and Temperature 1.1.2 Thermometers	3	2.5.2 Infrared Satellite Images	32
		3	2.5.3 Water Vapor Images2.5.4 Geostationary Satellites	33
	1.1.3 Temperature Measurements	3	2.5.5 Polar-Orbiting Satellites	35
	1.1.4 Temperature Scales1.1.5 Radiosonde Profiles	4	Summary	38
	1.1.5 Radiosofide Fromes	4	Summary	30
1.2	Pressure	5	Appendix 2.1 Important Satellite	
	1.2.1 Force and Pressure	6	Cloud Signatures	39
	1.2.2 Atmospheric Pressure	7		
	1.2.3 Vertical Distribution of Pressure	7	Appendix 2.2 Contiguous	
	1.2.4 Barometers	8	USA Reference Map	41
	1.2.5 Pressure Units	9		
	1.2.6 Some Useful Numbers	9	CHAPTER 3 Our Atmosphere: Origin,	
			Composition, and Structure	42
1.3	Wind	10		
	1.3.1 Measuring Wind	10	3.1 Aspect	42
	1.3.2 Reporting Wind	12		
	1.3.3 Additional Sources of		3.2 Composition	42
	Wind Information	13		
			3.3 Origin and Evolution	43
1.4	Precipitation	13		
			3.4 Future Evolution	45
1.5	Weather Stations	14		
	Summary	16	3.5 Vertical Structure	47
			Summary	49
	APTER 2 Spatial Representations of	f		
Wea	ather Data	17	Appendix 3.1 Dynamic Equilibrium	50
2.1	The Station Model	17	CHAPTER 4 Heat and Energy Transfer	5 1
2.2	Surface Maps	20	4.1 Conduction	51
	2.2.1 Isotherms and Temperature Maps			
	2.2.2 Temperature Fronts	21	4.2 Convection	52
	2.2.3 Isobars and Pressure Maps	22		
	2.2.4 Highs, Lows, Ridges, and Troughs		4.3 Radiation	53

	4.3.1 The Nature of Electromagnetic		5.7.5 How to Saturate	88
	Radiation	54	Summary	88
	4.3.2 Temperature and Radiation	55		
			CHAPTER 6 Cloud Formation	90
4.4	Radiative Interactions	55		
	4.4.1 Absorption	57	6.1 Adiabatic Processes	92
	4.4.2 Reflection	57		
	4.4.3 Scattering	58	6.2 Adiabatic Processes in the Atmosphere	93
	4.4.4 Radiative Equilibrium	58		
	4.4.5 Selective Absorbers	60	6.3 Dry Adiabatic Lapse Rate	94
	4.4.6 A Window to the Sky	60		
	4.4.7 The Greenhouse Effect	61	6.4 Relative Humidity	95
4.5	Radiation and Weather	66	6.5 Moist Adiabatic Lapse Rate	96
	4.5.1 Heat Imbalance	66		
	4.5.2 Seasonal Variations	68	6.6 Orographic Lifting	97
	4.5.3 Diurnal Variations	68		
	4.5.4 The Influence of Clouds	71	6.7 Lifting by Convergence	101
	4.5.5 Land–Ocean Contrasts	72		
	Summary	73	6.8 Frontal Lifting	101
СН	APTER 5 Water	75	6.9 Convection	102
			6.9.1 Stable Air	102
5.1	The Water Cycle	75	6.9.2 Unstable Air and Thermals	104
			6.9.3 Stable vs. Unstable	104
5.2	Saturation	76	6.9.4 Fair-Weather	
			Cumulus Clouds	106
5.3	Humidity	77	6.9.5 Conditional Instability and	
			Cumulonimbus	109
5.4	Relative Humidity	78	Summary	112
5.5	Humidity and Temperature	79	Appendix 6.1 A Cloud Family Album	113
	5.5.1 Relative vs. Absolute Humidity	80		
	5.5.2 Condensation	80	CHAPTER 7 Precipitation	117
5.6	Dew Point Temperature	82	7.1 Warm vs. Cold Clouds	117
5.7	Applications of the Dew point		7.2 Collision and Coalescence	118
	Temperature	83		
	5.7.1 Surface Weather Maps	83	7.3 Ice-Crystal Growth	119
	5.7.2 Meteograms	85		
	5.7.3 Radiosonde Profiles	87	7.4 Precipitation Types	121
	5.7.4 Back to Relative Humidity	87	Summary	123

App	endix 7.1 Some Optical Phenomena	124	Summary	165
СН	APTER 8 Wind	126	CHAPTER 10 Air Masses, Fronts,	167
8.1	Force and Acceleration	126	and Midlatitude Cyclones	107
			10.1 Air Masses	167
8.2	Pressure Gradient Force	127		
			10.2 Fronts	168
8.3	Sea Breeze and Land Breeze	128	10.2.1 Stationary Fronts	169
0 1	Coriolis Force	130	10.2.2 Cold Fronts 10.2.3 Warm Fronts	169 169
0.4	Corions Force	130	10.2.4 Occluded Fronts	170
8.5	Geostrophic Wind	131	10.2.5 Large-Scale Influences on Cyclone	170
0.0	accoropine vina	101	Structure, and the T-bone Model	171
8.6	Gradient Wind	134	ou decare, and the 1 some hadder	
			10.3 Midlatitude Cyclone Development	172
8.7	Surface Winds	135	10.3.1 The Life Cycle of a	
			Midlatitude Cyclone	172
8.8	Friction	138	10.3.2 Vertical Structure of Cyclones	174
			10.3.3 The February 2014 Cyclone	177
8.9	Topography	140	10.3.4 Where do Cyclones Form?	184
	8.9.1 Mountain Breeze and Valley Breeze	140	Summary	185
	8.9.2 Katabatic Winds	143	A	
	Summary	143	Appendix 10.1 Southern Hemisphere Midlatitude Cyclones	186
CH	APTER 9 Global Wind Systems	145	Widiatitude Cyclones	100
011/	A TEIT 5 GIODAI WIIIA OYSTOIIIS	140	Appendix 10.2 The Bergen School of	
9.1	The Averaged Atmosphere	146	Meteorology	187
	9.1.1 Surface Temperature	146		
	9.1.2 Upper-Level Heights	148	CHAPTER 11 Thunderstorms and	
	9.1.3 Surface Pressure	151	Tornadoes	188
	9.1.4 Precipitation	151		
			11.1 Ordinary Thunderstorm	188
9.2	The Single-Cell Model	152		
			11.2 Severe Thunderstorm	190
9.3	The Three-Cell Model	154		
0.4	Carra Larga Caala Circulations	455	11.3 Lightning and Thunder	192
9.4	Some Large-Scale Circulations 9.4.1 West Coast vs. East Coast	155	11.4 Supercelle	193
	9.4.1 West Coast vs. East Coast 9.4.2 Antarctica	155 157	11.4 Supercells	193
	9.4.3 The Sahel	157	11.5 Tornadoes	196
	9.4.4 The Indian Monsoon	158	11.5.1 Description	196
	9.4.5 El Niño	159	11.5.2 Tornado Development	196

	11.5.3 Tornado Alley	198	CHAPTER 14 Air Pollution	227
	Summary	199		
			14.1 Pollutants	227
СНА	PTER 12 Tropical Cyclones	201	14.1.1 Gases and Compounds	228
			14.1.2 Particulates	228
12.1	Facts and Figures	201	14.1.3 Photochemical Smog	228
12.2	Tropical Cyclone Structure	204	14.2 Wind and Stability	229
12.3	Tropical Cyclone Development	208	14.3 Large-Scale Patterns	232
	12.3.1 Tropical Easterly Wave	208		
	12.3.2 Tropical Depression	208	14.4 Topography	232
	12.3.3 Tropical Storm	209	Summary	233
	12.3.4 Tropical Cyclone (Hurricane)	210		
	12.3.5 Tropical Cyclone Decay	210	CHAPTER 15 Climate Change and Weather	234
12.4	Conditions for Tropical			
	Cyclone Development Summary	211 211	15.1 Past and Future	235
	Cammary		15.2 Changing Composition	236
СНА	PTER 13 Weather Forecasting	213		
	3		15.3 A Warmer World	237
13.1	Weather Forecasts and Uncertainty	214		
	•		15.4 An Altered Water Cycle	237
13.2	Prognostic Equations	214	•	
			15.5 Changing Global Wind Systems	239
13.3	Ensemble Forecasting	217		
			15.6 Midlatitude and Tropical	
13.4	Chaos and Weather Prediction	220	Cyclones in a Warmer World	240
13.5	From Forecast Grids to		15.7 Beyond Weather	241
	Reliable Forecast Values	222		
			15.8 The Forecast	241
13.6	Making a Forecast	223	Summary	242
	13.6.1 Medium to Long-Range	004		044
	Forecasting	224	Glossary	244
	13.6.2 Seasonal Outlook	226	References Credits	256
	Summary	226	Index	257 260

Preface

Having taught introductory classes on weather many times, we came to see the need for a textbook on the subject that covers the foundations of meteorology in a concise, clear, and engaging manner. We set out to create an informative, cost-effective text that meets the needs of students who may not have any background in mathematics and science. The result – Weather: A Concise Introduction – is an introductory meteorology textbook designed from scratch to provide students with a strong foundation in the physical, dynamical, and chemical processes taking place in the atmosphere.

This textbook is unique in that it:

- provides a concise and practical approach to understanding the atmosphere;
- ▶ introduces the basic physical laws early on and then ties them together with a single case study spanning the book;
- presents weather analysis tools early in the book to allow instructors to engage in discussions of current weather in tandem with the basic concepts, thus attracting and retaining student interest; and
- ▶ facilitates students' learning and understanding of the fundamental aspects of weather analysis and forecasting, as well as practical skills, through a careful description of the forecasting process. Modern methods, such as ensemble forecasting, are central to the approach.

Features

Case Study: February 2014 Cyclone

The main concepts of the book are illustrated in Chapters 2–13 by a single case study: a midlatitude cyclone that swept through the eastern half of the USA between February 19 and 22, 2014. This rich case study serves as a common thread throughout the book, allowing students to study it from multiple

perspectives. Viewing the storm in the context of different topics provides a familiar setting for mastering new subjects and for developing an holistic understanding of midlatitude cyclones.

Boxes on More Advanced Topics

Instructors have the option of including more advanced coverage through use of boxes that provide insights on various topics. For example, in Chapter 1, Weather Variables, boxes include an in-depth description of the four laws of physics that are central to the study of the atmosphere. The book contains 25 boxes, affording instructors the opportunity to tailor the level of the material that they present to students in their course.

Appendixes for Additional Coverage

Appendixes at the ends of Chapters 2, 3, 6, 7, and 10 include additional material on important cloud signatures found in satellite imagery, the concept of dynamic equilibrium, the cloud classification, some optical phenomena, southern hemisphere midlatitude cyclones, and the Bergen School of meteorology.

Summary

A summary of key points has been included at the end of each chapter so that students can, at a glance, confirm that they have understood the significant takeaway facts and ideas.

Figures, Charts, and Maps

Figures have been designed to convey the key concepts in a simple and self-explanatory way, keeping in mind that clean representations of information are more helpful to students than complex drawings. Graphs and maps have been created with real data as much as possible, obtained from NOAA, NASA,

Preface

ECMWF, and similar research-quality sources referenced in the text.

Key Terms and Glossary

The main text contains terms (in bold) that students need to understand and become familiar with. Many of these terms are listed in the Glossary at the back of the book. The Glossary allows the reader to look up terms easily whenever needed and can also be used to review important topics and key facts.

SI Units

We have consistently used SI units throughout the book, while providing alternative units whenever possible or relevant.

Organization

The first two chapters provide a general overview of key variables and weather maps used by meteorologists, which facilitates daily weather map discussions early in the course. We have found that motivating lecture topics with real-time examples using weather map discussions is a very effective way to engage students in the lecture material, and it allows instructors to introduce aspects of weather forecasting at their discretion well in advance of discussing the material more completely in Chapter 13. As a result, students are more invested in adding to their knowledge, which builds systematically toward understanding and predicting weather systems.

Chapters 3–8 provide foundational material on the composition and structure of the atmosphere, along with the application of the laws of classical physics to emphasize and explain the role of energy, water, and wind in weather systems.

Chapters 9–12 apply the foundational material to understanding the general circulation of the

atmosphere (Chapter 9), midlatitude cyclones and fronts (Chapter 10), thunderstorms (Chapter 11), and tropical cyclones (Chapter 12).

Chapters 13–15 build further on the first twelve chapters by applying the concepts developed to explain processes that affect how weather forecasts are made (Chapter 13), air pollution (Chapter 14), and climate change (Chapter 15).

Instructor Resources

A companion website at www.cambridge.org/weather contains PowerPoint slides of the figures in the text as well as a testbank of questions.

Acknowledgments

We thank: NOAA, NASA, and ECMWF for providing access to data and images; Reto Knutti, Jan Sedlacek, and Urs Beyerle for providing access to IPCC data; Rick Kohrs from the University of Wisconsin-Madison for providing global composite satellite imagery; and Paul Sirvatka from the College of DuPage for providing radar imagery.

We also thank Ángel Adames, Becky Alexander, Ileana Blade, Peter Blossey, Michael Diamond, Ralph Foster, Dargan Frierson, Qiang Fu, Dennis Hartmann, Lynn McMurdie, Paul Markowski, Cliff Mass, Max Menchaca, Yumin Moon, Scott Powell, Virginia Rux, David Schultz, Justin Sharp, Brian Smoliak, Mike Warner, Steve Warren, Rachel White, Darren Wilton, Matt Wyant, and Qi Zhong, as well as 13 anonymous reviewers, for their help in the preparation of this book.

This project would not have come to life without the support, help, influence, and constructive criticism from many fellow professors, teaching assistants, and students. We cannot acknowledge them all here by name, but we thank them nevertheless for the important role they have played in shaping the development of this book.

Introduction

Why should we study our atmosphere? Why should we learn about the causes and mechanisms of our weather? Weather affects our daily life: the clothes we wear (rain coat, shorts, hat, should we take an umbrella or sunglasses...?), the means of transportation we choose (walk, take a bus, ride our bike...?), our activities (ski, sail, water our plants, read a book in a coffee shop...?), and probably more. But beyond our daily concerns, weather affects society at large. Schools close when snow impedes traffic. Visitors to ski resorts might be more impatient for snow, while the ski instructors will be keeping an eye on the possibility of avalanches. Rangers are concerned with fog, thunderstorms, and flash floods. Fire patrols look for weather patterns that are conducive to forest fires (dryness, wind). Electricity providers are concerned by wind storms that can damage the infrastructure of the electrical grid and, on larger timescales, also need to plan how weather will affect upcoming energy needs (minimum temperatures impact heating, while maximum temperatures impact air-conditioning). Weather averages, such as prevailing winds, the typical temperature range, and mean precipitation determine how we build our homes and what locations are sensitive to extreme events, such as droughts, floods, hurricanes, tornadoes, etc. On longer timescales, we can ask how humans are changing the atmosphere, and what those changes imply for the weather and climate of the future.

To start answering those questions, we need to understand how the atmosphere works. We need to identify the basic processes that drive the atmosphere, and the laws that govern atmospheric processes. By doing so, we will be able to explain the weather phenomena we experience around the year and throughout the world. Furthermore, we will also be able to apply these laws to the current state of the atmosphere, and *predict* how it will evolve in the future.

© Caroline Planque

There is a lot of value in becoming a knowledgeable observer of the atmosphere. After reading this book, you will look at the sky differently, you will gain an understanding of weather and climate that will make you more attentive to the world around you. You will have a basic understanding of weather phenomena, of cyclones, thunderstorms, and hurricanes, and you will understand the basic aspects of weather forecasting. You will see beyond the weather forecast you get on your phone, radio, TV, or the internet, and you will be able to make your own forecast in many situations.

Introduction

Weather and Climate

Before we continue, let us clarify an important distinction between weather and climate. **Weather** is the *condition of the atmosphere at a particular time and location.* Weather varies on timescales of minutes to days. **Climate**, by contrast, is an *average of the weather.* It varies on timescales of decades to centuries and beyond. In this textbook, we will be mostly concerned with weather – even though many of the concepts have direct application to climate.

Getting Started

Our exploration of weather will start with a quick overview of important weather elements that we can observe or measure, and analyze. The choice of variables to observe is influenced by the laws of physics that govern the atmosphere. As we will see shortly, the atmosphere is made of *matter* (air and water etc.), it contains *energy* (heat), and it is in *motion* (wind, convection). Our understanding of weather is based

on the fundamental notion that matter, energy, and motion obey conservation laws. To apply these conservation laws to the atmosphere requires observations of temperature (conservation of energy), pressure (conservation of mass), wind (conservation of momentum), along with humidity, precipitation, and clouds. One step at a time, and one building block over another, we will then investigate the physical processes that underlie the atmosphere at work. Finally, we will articulate these processes together to build a picture of weather systems such as midlatitude cyclones, thunderstorms, and hurricanes. In doing so, we will follow the precepts of René Descartes, who advocated, as early as 1637, that every difficult problem should be divided into small parts, and that one should always proceed from the more simple to the more complex. This cornerstone of the scientific method, still in favor today, will be an important aspect of our exploration as we elaborate a thorough understanding of the atmosphere from its most fundamental constituents at the molecular scale to its most complex inner workings as a system for moving heat at the global scale.