
Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Computer Music, Euterpea, and Haskell

Many computer scientists and mathematicians have a serious interest in music,

and it seems that those with a strong affinity or acuity in one of these disciplines

is often strong in the other as well. It is quite natural then to consider how the

two might interact. In fact, there is a long history of interactions between music

and mathematics, dating back to the Greeks’ construction of musical scales

based on arithmetic relationships, and including many classical composers

use of mathematical structures, the formal harmonic analysis of music, and

many modern music composition techniques. Advanced music theory uses

ideas from diverse branches of mathematics such as number theory, abstract

algebra, topology, category theory, calculus, and so on.

There is also a long history of efforts to combine computers and music.

Most consumer electronics today are digital, as are most forms of audio

processing and recording. But, in addition, digital musical instruments provide

new modes of expression, notation software and sequencers have become stan-

dard tools for the working musician, and those with the most computer science

savvy use computers to explore new modes of composition, transformation,

performance, and analysis.

This textbook explores the fundamentals of computer music using a

programming-language-centric approach. In particular, the functional pro-

gramming language Haskell is used to express all of the computer music

concepts. Thus, a by-product of learning computer music concepts will be

learning how to program in Haskell. The core musical ideas are collected into a

Haskell library called Euterpea. The name “Euterpea” is derived from Euterpe,

who was one of the nine Greek muses, or goddesses of the arts, specifically the

muse of music.

1

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 1 Computer Music, Euterpea, and Haskell

1.1 The Note versus Signal Dichotomy

The field of computer music has grown astronomically over the past several

decades, and the material can be structured and organized along several

dimensions. A dimension that proves particularly useful with respect to a

programming language is one that separates high-level musical concerns from

low-level musical concerns. Since a “high-level” programming language –

namely Haskell – is used to program at both of these musical levels, to avoid

confusion, the terms note level and signal level will be used in the musical

dimension.

At the note level, a note (i.e., pitch and duration) is the lowest musical

entity that is considered, and everything else is built up from there. At this

level, in addition to conventional representations of music, we can study

interesting aspects of so-called algorithmic composition, including the use

of fractals, grammar-based systems, stochastic processes, and so on. From

this basis we can also study the harmonic and rhythmic analysis of music,

although that is not currently an emphasis in this textbook. Haskell facilitates

programming at this level through its powerful data abstraction facilities,

higher-order functions, and declarative semantics.

In contrast, at the signal level, the focus is on the actual sound generated

in a computer music application, and thus a signal is the lowest entity that is

considered. Sound is concretely represented in a digital computer by a discrete

sampling of the continuous audio signal at a high enough rate that human ears

cannot distinguish the discrete from the continuous, usually 44,100 samples

per second (the standard sampling rate used for CDs). But in Euterpea, these

details are hidden: signals are treated abstractly as continuous quantities. This

greatly eases the burden of programming with sequences of discrete values.

At the signal level, we can study sound synthesis techniques (to simulate the

sound of a conventional instrument, say, or something completely artificial),

audio processing (e.g., determining the frequency spectrum of a signal), and

special effects (reverb, panning, distortion, and so on).

Suppose that a musician is playing music using a metronome set at 96,

which corresponds to 96 beats per minute. That means that one beat takes

60/96 = 0.625 seconds. At a stereo sampling rate of 44,100 samples per second,

that in turn translates into 2 × 0.625 × 44,100 = 55,125 samples, and each

sample typically occupies several bytes1 of computer memory.

1 The storage size of a sample is called the bit depth. Modern audio hardware typically supports
bit depths of 16 bits (2 bytes) to 32 bits (4 bytes).

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Basic Principles of Programming 3

In contrast, at the note level, we only need some kind of operator or

data structure that says “play this note,” which requires a total of only a

small handful of bytes. This dramatic difference highlights one of the key

computational differences between programming at the note level and that at

the signal level.

Of course, many computer music applications involve both the note level

and the signal level, and indeed there needs to be a mechanism to mediate

between the two. Although such mediation can take many forms, it is for the

most part straightforward, which is another reason why the distinction between

the note level and the signal level is so natural.

This textbook begins with exploration of the note level (Chapters 1–17)

and follows with examination of the signal level (Chapters 18–23). If you are

interested only in the signal level, you may wish to skip Chapters 9–17.

1.2 Basic Principles of Programming

Programming, in its broadest sense, is problem solving. It begins by recogniz-

ing problems that can and should be solved using a digital computer. Thus the

first step in programming is answering the question “What problem am I trying

to solve?”

Once the problem is understood, a solution must be found. This may not be

easy, of course, and you may discover several solutions, so a way to measure

success is needed. There are various dimensions in which to do this, including

correctness (“Will I get the right answer?”) and efficiency (“Will it run fast

enough, or use too much memory?”). But the distinction of which solution is

better is not always clear, since the number of dimensions can be large, and

programs will often excel in one dimension and do poorly in others. For exam-

ple, there may be one solution that is fastest, one that uses the least amount of

memory, and one that is easiest to understand. Deciding which to choose can

be difficult, and is one of the more interesting challenges in programming.

The last measure of success mentioned earlier, clarity of a program, is

somewhat elusive, being difficult to quantify and measure. Nevertheless, in

large software systems, clarity is an especially important goal, since such

systems are worked on by many people over long periods of time, and evolve

considerably as they mature. Having easy-to-understand code makes it much

easier to modify.

In the area of computer music, there is another reason why clarity is

important: namely, that the code often represents the author’s thought process,

musical intent, and artistic choices. A conventional musical score does not

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 1 Computer Music, Euterpea, and Haskell

say much about what the composer thought as he or she wrote the music,

but a program often does. So, when you write your programs, write them for

others to see and aim for elegance and beauty, just like the musical result that

you desire.

Programming is itself a creative process. Sometimes programming solu-

tions (or artistic creations) come to mind all at once, with little effort. More

often, however, they are discovered only after lots of hard work! We may write

a program, modify it, throw it away and start over, give up, start again, and so

on. It is important to realize that such hard work and reworking of programs is

the norm, and in fact you are encouraged to get into the habit of doing so. Do

not always be satisfied with your first solution, and always be prepared to go

back and change or even throw away those parts of your program that you are

not happy with.

1.3 Computation by Calculation

It is helpful when learning a new programming language to have a good

grasp of how programs in that language are executed – in other words, an

understanding of what a program means. The execution of Haskell programs

is perhaps best understood as computation by calculation. Programs in Haskell

can be viewed as functions whose input is that of the problem being solved,

and whose output is the desired result – and the behavior of functions can be

effectively understood as computation by calculation.

An example involving numbers might help demonstrate these ideas. Num-

bers are used in many applications, and computer music is no exception. For

example, integers might be used to represent pitch, and floating-point numbers

might be used to perform calculations involving frequency or amplitude.

Suppose we wish to perform an arithmetic calculation such as 3 × (9 + 5).

In Haskell this would be written as 3 ∗ (9 + 5), since most standard computer

keyboards and text editors do not support the special × symbol. The result can

be calculated as follows:

3 ∗ (9 + 5)

⇒ 3 ∗ 14

⇒ 42

It turns out that this is not the only way to compute the result, as evidenced by

this alternative calculation:2

2 This assumes that multiplication distributes over addition in the number system being used, a
point that will be returned to later in the text.

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.3 Computation by Calculation 5

3 ∗ (9 + 5)

⇒ 3 ∗ 9 + 3 ∗ 5

⇒ 27 + 3 ∗ 5

⇒ 27 + 15

⇒ 42

Even though this calculation takes two extra steps, it at least gives the

same, correct answer. Indeed, an important property of each and every program

written in Haskell is that it will always yield the same answer when given the

same inputs, regardless of the order chosen to perform the calculations.3 This

is precisely the mathematical definition of a function: for the same inputs, it

always yields the same output.

On the other hand, the first calculation above required fewer steps than

the second, and thus it is said to be more efficient. Efficiency in both space

(amount of memory used) and time (number of steps executed) is important

when searching for solutions to problems. Of course, if the computation returns

the wrong answer, efficiency is a moot point. In general, it is best to search first

for an elegant (and correct!) solution to a problem, and later refine it for better

performance. This strategy is sometimes summarized as “Get it right first!”

The above calculations are fairly trivial, but much more sophisticated

computations will be introduced soon enough. For starters, and to introduce the

idea of a Haskell function, the arithmetic operations performed in the previous

example can be generalized by defining a function to perform them for any

numbers x, y, and z:

simple x y z = x ∗ (y + z)

This equation defines simple as a function of three arguments, x, y, and z.

Note the use of spaces in this definition to separate the function name, simple,

from its arguments, x, y, and z. Unlike many other programming languages,

Haskell functions are defined by providing first the function name and then any

arguments, separated by spaces. More traditional notations for this function

would look like this:

simple(x, y, z) = x × (y + z)

simple(x, y, z) = x · (y + z)

simple(x, y, z) = x(y + z)

simple(x, y, z) = x ∗ (y + z)

3 This is true as long as a non-terminating sequence of calculations is not chosen, another issue
that will be addressed later.

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 1 Computer Music, Euterpea, and Haskell

Incidentally, the last one is also acceptable Haskell syntax – but it is not

interchangeable with the previous Haskell definition. Writing simple x y z

actually means something very different from writing simple (x, y, z) in

Haskell. Usage of parentheses around Haskell function arguments indicates

a tuple – a concept that will be discussed in more detail later in the text.

In any case, it should be clear that “simple 3 9 5” is the same as “3∗(9+5),”

and that the proper way to calculate the result is:

simple 3 9 5

⇒ 3 ∗ (9 + 5)

⇒ 3 ∗ 14

⇒ 42

The first step in this calculation is an example of unfolding a function

definition: 3 is substituted for x, 9 for y, and 5 for z on the right-hand side

of the definition of simple. This is an entirely mechanical process, not unlike

what the computer actually does to execute the program.

simple 3 9 5 is said to evaluate to 42. To express the fact that an expression

e evaluates (via zero, one, or possibly many more steps) to the value v, we

will write e �⇒ v (this arrow is longer than that used earlier). So we can

say directly, for example, that simple 3 9 5 �⇒ 42, which should be read

“simple 3 9 5 evaluates to 42.”

With simple now suitably defined, we can repeat the sequence of arithmetic

calculations as often as we like, using different values for the arguments to

simple. For example, simple 4 3 2 �⇒ 20.

We can also use calculation to prove properties about programs. For

example, it should be clear that for any a, b, and c, simple a b c should yield

the same result as simple a c b. For a proof of this, we calculate symbolically –

that is, using the symbols a, b, and c rather than concrete numbers such as

3, 5, and 9:

simple a b c

⇒ a ∗ (b + c)

⇒ a ∗ (c + b)

⇒ simple a c b

Note that the same notation is used for these symbolic steps as for concrete

ones. In particular, the arrow in the notation reflects the direction of formal

reasoning, and nothing more. In general, if e1 ⇒ e2, then it is also true that

e2 ⇒ e1.

These symbolic steps are also referred to as “calculations,” even though the

computer will not typically perform them when executing a program (although

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.3 Computation by Calculation 7

it might perform them before a program is run if it thinks that it might make

the program run faster). The second step in the calculation above relies on the

commutativity of addition (for any numbers x and y, x + y = y + x). The

third step is the reverse of an unfold step, and is appropriately called a fold

calculation. It would be particularly strange if a computer performed this step

while executing a program, since it does not seem to be headed toward a final

answer. But for proving properties about programs, such “backward reasoning”

is quite important.

When we wish to spell out the justification for each step, whether symbolic

or concrete, a calculation can be annotated with more detail, as in:

simple a b c

⇒ {unfold}

a ∗ (b + c)

⇒ {commutativity}

a ∗ (c + b)

⇒ { fold}

simple a c b

In most cases, however, this will not be necessary.

Proving properties of programs is another theme that will be repeated

often in this text. Computer music applications often have some kind of a

mathematical basis, and that mathematics must be reflected somewhere in our

programs. But how do we know if we got it right? Proof by calculation is one

way to connect the problem specification with the program solution.

More broadly speaking, as the world begins to rely more and more on

computers to accomplish not just ordinary tasks such as writing term papers,

sending e-mail, and social networking but also life-critical tasks such as

controlling medical procedures and guiding spacecraft, the correctness of

programs gains in importance. Proving complex properties of large, complex

programs is not easy – and rarely, if ever, done in practice – but that should

not deter us from proving simpler properties of the whole system, or complex

properties of parts of the system, since such proofs may uncover errors, and if

not, will at least give us confidence in our effort.

If you are someone who is already an experienced programmer, the idea

of computing everything by calculation may seem odd at best and naı̈ve at

worst. How do we write to a file, play a sound, draw a picture, or respond

to mouse-clicks? If you are wondering about these things, it is hoped that

you have patience reading the early chapters, and that you find delight in

reading the later chapters where the full power of this approach begins

to shine.

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 1 Computer Music, Euterpea, and Haskell

In many ways this first chapter is the most difficult, since it contains the

highest density of new concepts. If the reader has trouble with some of the

concepts in this overview chapter, keep in mind that most of them will be

revisited in later chapters, and do not hesitate to return to this chapter later to

reread difficult sections; they will likely be much easier to grasp at that time.

Details: In the remainder of this textbook the need will often arise to

explain some aspect of Haskell in more detail, without distracting too

much from the primary line of discourse. In those circumstances the

explanations will be offset in a shaded box such as this one, proceeded

with the word “Details.”

Exercise 1.1 Write out all of the steps in the calculation of the value of

simple (simple 2 3 4) 5 6.

Exercise 1.2 Prove by calculation that simple (a − b) a b �⇒ a2 − b2.

1.4 Expressions and Values

In Haskell, the entities on which calculations are performed are called expres-

sions, and the entities that result from a calculation – i.e., “the answers” – are

called values. It is helpful to think of a value just as an expression on which no

more calculation can be carried out – every value is an expression, but not the

other way around.

Examples of expressions include atomic (meaning indivisible) values such

as the integer 42 and the character ’a’, which are examples of two primitive

atomic values in Haskell. The next chapter introduces examples of constructor

atomic values, such as the musical notes C, D, Ef , Fs, etc., which in standard

music notation are written C, D, E♭, F♯, etc., and are pronounced C, D, E-flat,

F-sharp, etc. (In music theory, note names are called pitch classes.)

In addition, there are structured expressions (i.e., made from smaller pieces)

such as the list of pitches [C, D, Ef ], the character/number pair (’b’, 4)

(lists and pairs are different in a subtle way, to be described later), and the

string "Euterpea". Each of these structured expressions is also a value,

since by themselves there is no further calculation that can be carried out. As

another example, 1 + 2 is an expression, and one step of calculation yields the

expression 3, which is a value, since no more calculations can be performed. As

a final example, as was explained earlier, the expression simple 3 9 5 evaluates

to the value 42.

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.5 Types 9

Sometimes, however, an expression has a never-ending sequence of calcu-

lations. For example, if x is defined as:

x = x + 1

then here is what happens when trying to calculate the value of x:

x

⇒ x + 1

⇒ (x + 1) + 1

⇒ ((x + 1) + 1) + 1

⇒ (((x + 1) + 1) + 1) + 1

...

Similarly, if a function f is defined as:

f x = f (x − 1)

then an expression such as f 42 runs into a similar problem:

f 42

⇒ f 41

⇒ f 40

⇒ f 39

...

Both of these clearly result in a never-ending sequence of calculations. Such

expressions are said to diverge, or not terminate. In such cases the symbol

⊥, pronounced “bottom,” is used to denote the value of the expression. This

means that every diverging computation in Haskell denotes the same ⊥ value,4

reflecting the fact that, from an observer’s point of view, there is nothing to

distinguish one diverging computation from another.

1.5 Types

Every expression (and therefore every value) also has an associated type. It is

helpful to think of types as sets of expressions (or values), in which members

of the same set have much in common. Examples include the primitive atomic

types Integer (the set of all integers) and Char (the set of all characters), the

user-defined atomic type PitchClass (the set of all pitch classes, i.e., note

names), as well as the structured types [Integer ] and [PitchClass] (the sets

of all lists of integers and lists of pitch classes, respectively), and String (the

set of all Haskell strings).

4 Technically, each type has its own version of ⊥.

www.cambridge.org/9781108416757
www.cambridge.org


Cambridge University Press
978-1-108-41675-7 — The Haskell School of Music
Paul Hudak , Donya Quick 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 1 Computer Music, Euterpea, and Haskell

The association of an expression or value with its type is very useful, and

there is a special way of expressing it in Haskell. Using the examples of values

and types above:

D :: PitchClass

42 :: Integer

’a’ :: Char

"Euterpea" :: String

[C, D, Ef ] :: [PitchClass]

(’b’, 4) :: (Char, Integer)

Each association of an expression with its type is called a type signature. Note

the use of single quotes of the form ’x’ or ’x’ in these definitions to indicate

single characters. It is important to recognize the single quote (or apostrophe)

symbol as being distinct from the backquote symbol (typically found on the

same key as ∼), which appears as ‘x‘ in this text and serves very specific

syntactic purposes in Haskell, to be discussed later on.

Details: Note that the names of specific types are capitalized, such as

Integer and Char, as are the names of some atomic values, such as D and

Fs. These will never be confused in context, since things to the right of

“::” are types, and things to the left are values. Note also that user-defined

names of values are not capitalized, such as simple and x. This is not just

a convention: it is required when programming in Haskell. In addition, the

case of the other characters matters, too. For example, test, teSt, and tEST

are all distinct names for values, as are Test, TeST , and TEST for types.

Details: Literal characters are written enclosed in single forward quotes

(apostrophes), as in ’a’, ’A’, ’b’, ’,’, ’!’, ’ ’ (a space), and so

on. (There are some exceptions, however; see the Haskell Report for

details.) Strings are written enclosed in double quote characters, as in

"Euterpea" above. The connection between characters and strings

will be explained in a later chapter.

The “::” should be read “has type,” as in “42 has type Integer.” Note that

square braces are used both to construct a list value (the left-hand side of

(::) above) and to describe its type (the right-hand side above).

Analogously, the round braces used for pairs are used in the same way.

But also note that all of the elements in a list, however long, must have

the same type, whereas the elements of a pair can have different types.

www.cambridge.org/9781108416757
www.cambridge.org

