

"John is the only person I know that can fill the gap between technology and philosophy; and he really did in this book. I recommend this text for students and professional engineers, as well as for non-experienced people who are interested in getting a frank and sometimes humorous assessment of gas turbine technology."

-Alberto Traverso, University of Genoa

"This book is clearly written by an expert with a lot of industry experience in OEMs (original equipment manufacturers) and operation, resulting in a book that shows a very practical approach to design and analysis of turbomachinery that matters in the real world without lacking the theoretical depths that are necessary to understand the topic thoroughly. This very well-written book covers the theoretical basics of thermodynamics as well as components such as the compressor, the combustor, the turbine, the whole engine, and additional topics needed to understand the analysis and design of electrical power generation equipment. It provides a comprehensive overview for everyone interested in this fascinating topic, be it a practitioner with OEMs and utilities, or academics, such as a researcher or a new student of the field.

This long-awaited book closes a gap in the literature between the practitioner's view and a purely theoretical approach."

—Hans-Juergen Kiesow, ABB, Siemens (retired)

"It is rare that one comes across a book that can be considered seminal in the area of gas turbine engineering and that provides an excellent blend of theory and practice of the state of the art of heavy- duty advanced gas turbines. The book provides a detailed, lucid, and insightful treatment of a wide range of gas turbine topics, including history, cycles, components and their interactions, and technology trends. It provides a quantitative and qualitative treatment of the subject matter with usable equations, insights, and rules of thumb that enable quick design checks and calculations. It will be of immense value to designers and users of gas turbines. John's technical leadership over the past two and a half decades has contributed immeasurably to the current understanding of large advanced gas turbines. Much of this expertise has been successfully encapsulated in this book. This book is of archival quality and will endure and enrich gas turbine engineers for decades to come."

—Cyrus B. Meher-Homji, PE, Bechtel Fellow and Turbomachinery Technology Manager, Bechtel Corporation

Gas Turbines for Electric Power Generation

In this essential reference, both students and practitioners in the field will find an accessible discussion of electric power generation with gas turbine power plants using quantitative and qualitative tools. Beginning with a basic discussion of thermodynamics of gas turbine cycles from a second law perspective, the material goes on to provide an in-depth analysis of the translation of the cycle to a final product, facilitating quick estimates.

In order to provide readers with the knowledge they need to design turbines effectively, there are explanations of simple- and combined-cycle design considerations and state-of-the-art performance prediction and optimization techniques, as well as rules of thumb for design and off-design performance and operational flexibility and simplified calculations for myriad design and off-design performance. The text also features an introduction to proper material selection, manufacturing techniques, and the construction, maintenance, and operation of gas turbine power plants.

S. Can Gülen (PhD) PE, Bechtel Fellow, ASME Fellow, has a combined 25 years of mechanical engineering experience covering a wide spectrum of technology, system, and software design, development, assessment, and analysis in the field of steam and gas turbine combined-cycle process and power plant turbomachinery and thermodynamics at Thermoflow, Inc., General Electric, and Bechtel.

He has written numerous technical papers and journal articles on design practices and technical assessment reports. He holds more than 20 US patents on gas turbine performance, cost, optimization, data reconciliation, analysis, and modeling.

Gas Turbines for Electric Power Generation

S. CAN GÜLEN

Bechtel Infrastructure & Power. Inc.

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108416658

DOI: 10.1017/9781108241625

© S. Can Gülen 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Names: Gülen, S. Can, 1962- author.

Title: Gas turbines for electric power generation / S. Can Gülen (Bechtel Infrastructure & Power, Inc.).

Description: Cambridge; New York, NY: Cambridge University Press, 2019. I Includes bibliographical references and index.

Identifiers: LCCN 2018039284 | ISBN 9781108416658 (hardback : alk. paper) Subjects: LCSH: Gas-turbines. | Electric power production. | Electric generators.

Classification: LCC TJ778 .G8284 2019 | DDC 621.31/2133-dc23

LC record available at https://lccn.loc.gov/2018039284

ISBN 978-1-108-41665-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Pref	face	page xiii
1	Intro	oduction	1
Part I	Prerequi	isites	7
2	The	Tool Chest	9
	2.1	Computer Software	9
	2.2	Books	14
	2.3	Journals, Standards, and Codes	16
	Refe	erences	18
3	Ground Rules		20
	3.1	Chest Imputer Software oks Irmals, Standards, and Codes res Rules its portant Metrics cle Terminology tal or Static? or 60 Hertz? ing Temperature ting Performance res Present Izwarth's Explosion Turbine own Boveri's Neuchâtel Unit rakers Motoren Jumo-004 cap: 1900–1950 st—World War II y Players e Class Hierarchy e Golden Age: 1980–2015	20
	3.2	Important Metrics	23
		- 5	28
		Total or Static?	29
	3.5	50 or 60 Hertz?	33
	3.6	Firing Temperature	35
	3.7	E	36
	Refe	erences	38
4	Past and Present		39
	4.1	Holzwarth's Explosion Turbine	42
	4.2	Brown Boveri's Neuchâtel Unit	45
	4.3	Junkers Motoren Jumo-004	47
	4.4	Recap: 1900–1950	49
	4.5	Post–World War II	53
	4.6	Key Players	58
	4.7	The Class Hierarchy	62
	4.8	The Golden Age: 1980–2015	64
	References		70

Vİİ

viii Contents

Part II	Fundam	nentals	73
5	Ther	rmodynamics	75
	5.1	Mean Effective Temperatures	79
	5.2	Optimum Brayton-Cycle Pressure Ratio	87
	5.3	Exergy	92
	5.4	Kilowatt "Thermal"	95
	5.5	"Tds" Equations	96
	5.6	Property Calculations	101
	5.7	Maxwell Relations	106
	5.8	Simple Property Calculation	108
	5.9	Enthalpy	113
	5.10	Maximum Power/Minimum Entropy	117
	References		118
6	Technology Factors		119
	6.1	State of the Art	119
	6.2	How to Use Technology Factors	128
		Is the Technology Factor a Fudge Factor?	131
	6.4	Takeaways	134
7	Heat and Mass Balance		136
	7.1	Control Volume	136
	7.2	Polytropic or Isentropic?	140
	7.3	Examples	144
		Exergy Balance	150
	References		153
8	Real Cycle Analysis		154
	8.1	"Real" Uncooled Turbine	155
	8.2	"Real" Cooled Turbine	162
	8.3	Another "Real" Cooled Turbine Model	171
	8.4	Performance Derivatives	173
		Improving the Basic Cycle	177
	Refe	erences	191
9	Turbine Cooling		193
	9.1	History	193
	9.2	Open-Loop Air Cooling	195
	9.3	Closed-Loop Steam Cooling	210
	References		215

			Contents ix
10	Turbine Aero		217
	10.1	Stage Geometry	221
	10.2	Stage Design Parameters	227
	10.3	Turbine Design	234
	10.4	Impact of Cooling Flow	247
	10.5	Stage Enthalpy–Entropy Diagram	251
	10.6	Exit Annulus Area	256
	10.7	Exhaust Diffuser	259
	Refe	rences	264
11	Comp	pressor Aero	265
	11.1	Design Considerations	268
	11.2	Operability Considerations	293
	Refe	rences	306
12	Combustion		308
	12.1	Basics	308
	12.2	Combustor Hardware	321
	12.3	DLN Combustors	325
	12.4	Combustor Operability	332
	12.5	Emission Regulations	341
	12.6	Fuel Flexibility	346
	12.7	Combustor Calculations	354
	References		359
13	Materials		362
	13.1	Steels	366
	13.2	Superalloys	367
	13.3	Future Materials	373
	13.4	Thermal Barrier Coatings	375
	13.5	Typical Material Properties	376
	13.6	When Materials Fail	380
	References		395
14	The Hardware		397
	14.1	The Rotor	398
	14.2	This Is How It Was Back Then	401
	14.3	But This Is Now	406
	14.4	Erection	411
	14.5	Commissioning	416
	References		421

x Contents

Part III	Extras		423
15	The Alternating Current Generator		
	15.1	Synchronous Machines	425
	15.2	The Hardware	442
	15.3	Synchronization	449
	15.4	Electrical Configuration	450
	Refer	rences	452
16	Reliability, Availability, and Maintainability		453
	16.1	RAM Metrics	454
	16.2	Failure Mechanisms	461
	16.3	Maintenance Considerations	465
	16.4	Performance Deterioration	469
	16.5	Condition Monitoring	474
	16.6	Data Analysis	480
	16.7	Uncertainty	483
	16.8	1	488
	References		489
17	Combined Cycle		490
	17.1	First Law Approach	494
	17.2	Second Law Approach	503
	17.3	Auxiliary Power Consumption	507
	17.4	Importance of the Bottoming Cycle	509
	References		511
18	Off-Design Operation		512
	18.1	Performance	514
	18.2	Controls	532
	18.3	Model-Based Control	540
	Refer	rences	547
19	Transient Operation		549
	19.1	Gas Turbine Dynamic Simulation	551
	19.2	Thermal Stress Management	557
	19.3	Startup	563
	19.4	Shutdown	578
	19.5	Frequency Response	580
	References		592
20	Economics		593
	20.1	How Much Does It Cost?	593
	20.2	Levelized Cost of Electricity	597

			Contents	xi
	20.3	Maximum Acceptable Capital Cost		611
	20.4	Commercial Margins		614
	20.5	Dangers of Deterministic Thinking		619
	20.6	Market Considerations		621
	Refer	rences		624
21	The Hall of Fame			626
	21.1	Siemens HL Class		626
	21.2	GE HA Class		630
	21.3	MHPS J/JAC Class		636
	21.4	Ansaldo Energia GT36		642
	Refer	rences		648
Part IV	/ Special	Topics		651
22	Close	Closed-Cycle Gas Turbine		
	22.1	Supercritical CO ₂ Cycles		655
	22.2	The Allam Cycle		661
	Refer	rences		663
23	Aeroderivative Gas Turbine			665
	23.1	History of Aeroderivatives		669
	23.2	Aeroderivative Combined Cycle		671
	23.3	Gas Turbine-Battery Hybrid		673
	23.4	Not "Derivative" but Close		674
	23.5	Intercooled Aeroderivative Gas Turbine		677
	23.6	SPRINT TM		678
	23.7	Aeroderivative vs. Industrial Gas Turbine		679
	References			685
24	Epilogue			687
24	24.1	Brayton-Cycle Variations		692
	24.2	Other Future Prospects		694
	24.3	Additive Manufacturing Technologies		696
	24.4	Data Analytics		698
	References			701
	Appendix A Nomenclature			702
	Subscripts			
	State-Point Numbering			
	Appendix B Acronyms and Abbreviations			
	Appendix C Visual Basic Functions			711 712
	Appendix D Convective Heat Transfer Coefficient			
	Index			714

Preface

He who defends everything, defends nothing.

Frederick II of Prussia

To paraphrase the great Prussian emperor, to cover everything is to cover nothing. This book is a monograph on a specific class of heat engines, namely the heavy-duty industrial gas turbine for electric power generation. It does not cover gas turbines used for aircraft, marine, or land-based vehicle propulsion (i.e., there is no discussion of turbofan, turbojet, or turboprop engines, except in a historical context). Its focus is fully on land-based (i.e., stationary shaft) power generation and conversion thereof into electric power via alternating current synchronous machines; especially so-called frame machines with outputs of 100 MWe or more, which are also known as heavy-duty industrial gas turbines. In other words, a discussion of "microturbines" is not to be found herein.

This is not a textbook, although it can be used by a student of mechanical engineering with sufficient background in thermodynamics, fluid mechanics, and heat transfer as a useful reference to help complete certain class assignments.

This is not a handbook of generalized information either. In our times, the necessity of handbooks is debatable. A wide range of detailed information on any given subject is only one mouse click away. This book is a compendium of expert knowledge, which is either impossible to find online or, even if found, is either too sketchy or too diluted or too obscure to be of immediate, practical use.

The intended audience is primarily professionals (i.e., engineers and researchers) who are working in the industry or in research organizations on various aspects of electric power generation with gas turbines. Graduate and undergraduate students who are working on projects toward their degree with an ultimate goal of joining the industry can be added to this group as well.

It is an advanced text with little material of an introductory nature (mostly a few paragraphs to start the main narrative). In other words, one will not find the derivation of Navier–Stokes equations from the analysis of an infinitesimally small control volume of fluid in this book. The goal of the author is to provide the reader with specialized knowledge, calculation methods, and tools that can be readily applied to the solution of the day-to-day problems encountered in the design, development, optimization, operation, and maintenance of gas turbine power plants. Said methods and tools comprise

Xİİİ

xiv Preface

specific data (some hard to find – even on the Internet, at least not in a compact and readily usable form), practical formulae, Visual Basic code, charts, and rules of thumbs. Most of the specific methods and tools have been developed and used by the author over the course of more than two decades spent in the industry.

What is the use of such a monograph? After all, at the time of writing (i.e., near the end of the second decade of the twenty-first century), almost all aspects of gas turbine power plant design are dominated by highly sophisticated, extremely expensive (i.e., not available to individuals) computer software with steep learning curves. These "black box" tools incorporate the latest techniques in computational fluid dynamics and finite element analysis fortified with flashy graphical user interfaces and other "digital" accoutrements on the most advanced computing platforms to enable engineers (some fresh out of school) to design, say, advanced airfoils in order to squeeze the last 0.01 percent efficiency from the compressor or the turbine. Most complicated gas turbine combined cycle calculations for tens or hundreds of cases can be done in a matter of seconds by user-friendly heat balance simulation software.

The goal of this monograph, as envisioned by the author, is to provide the junior engineer or researcher using those tools, as well as his or her supervisor with decades of experience under his or her belt, with a single source of reference to put every little detail in its rightful place in the proverbial big picture, which will be expounded upon in the next few pages.

Before moving on, however, there is a simple fact that needs to be stated unequivocally. This book is dedicated to the memory of Mustafa Kemal Atatürk (1881–193∞) and his elite cadre of reformers. Without their vision, sacrifices and groundbreaking work, there would not have been a fertile ground where my parents, teachers, mentors, family and friends could shape me into the author of this book.