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Introduction and Examples:
Physical Models

1.1 A Brief General Introduction

The beginning of the study of ordinary differential equations (ODE)

could perhaps be attributed to Newton and Leibnitz, the inventors of

differential and integral calculus. The theory began in the late 17th

century with the early works of Newton, Leibnitz and Bernoulli. As was

customary then, they were looking at the fundamental problems in

geometry and celestial mechanics. There were also important

contributions to the development of ODE, in the initial stages, by great

mathematicians – Euler, Lagrange, Laplace, Fourier, Gauss, Abel,

Hamilton and others. As the modern concept of function and analysis

were not developed at that time, the aim was to obtain solutions of

differential equations (and in turn, solutions to physical problems) in

terms of elementary functions. The earlier methods in this direction are

the concepts of integrating factors and method of separation of variables.

In the process of developing more systematic procedures, Euler,

Lagrange, Laplace and others soon realized that it is hopeless to discover

methods to solve differential equations. Even now, there are only a

handful of sets of differential equations, that too in a simpler form, whose

solutions may be written down in explicit form. It is in this scenario that

the qualitative analysis – existence, uniqueness, stability properties,

asymptotic behaviour and so on – of differential equations became very

important. This qualitative analysis depends on the development of other

branches of mathematics, especially analysis. Thus, a second phase in the

study of differential equations started from the beginning of the 19th

century based on a more rigorous approach to calculus via the

www.cambridge.org/9781108416412
www.cambridge.org


Cambridge University Press
978-1-108-41641-2 — Ordinary Differential Equations
A. K. Nandakumaran , P. S. Datti , Raju K. George 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Ordinary Differential Equations: Principles and Applications

mathematical analysis. We remark that the first existence theorem for first

order differential equations is due to Cauchy in 1820. A class of

differential equations known as linear differential equations, is much

easier to handle. We will analyse linear equations and linear systems in

more detail and see the extensive use of linear algebra; in particular, we

will see how the nature of eigenvalues of a given matrix influences the

stability of solutions.

After the invention of differential calculus, the question of the

existence of antiderivative led to the following question regarding

differential equation: Given a function f , does there exist a function g

such that ġ(t) = f (t)? Here, ġ(t) is the derivative of g with respect to t.

This was the beginning of integral calculus and we refer to this problem

as an integral calculus problem. In fact, Newton’s second law of motion

describing the motion of a particle having mass m states that the rate

change of momentum equals the applied force. Mathematically, this is

written as d
dt
(mv) = −F , where v is the velocity of the particle. If

x = x(t) is the position of the particle at time t, then v(t) = ẋ(t). In

general, the applied force F is a function of t, x and v. If we assume F is

a function of t, x, we have a second order equation for x given by

mẍ = −F(t,x). If F is a function of x alone, we obtain a conservative

equation which we study in Chapter 8. If on the other hand, F is a

function of t alone, then the second law leads to two integral calculus

problems: namely, first solve for the momentum p = mv by ṗ = −F(t)
and then solve for the position using mẋ = p. This also suggests that one

of the best ways to look at a differential equation is to view it as a

dynamical system; namely, the motion of some physical object. Here t,

the independent variable is viewed as time and x is the unknown variable

which depends on the independent variable t, and is known as the

dependent variable.

A large number of physical and biological phenomena can be

modelled via differential equations. Applications arise in almost all

branches of science and engineering–radiation decay, aging, tumor

growth, population growth, electrical circuits, mechanical vibrations,

simple pendulum, motion of artificial satellites, to mention a few.

In summary, real life phenomena together with physical and other

relevant laws, observations and experiments lead to mathematical models

(which could be ODE). One would like to do mathematical analysis and

computations of solutions of these models to simulate the behaviour of

these physical phenomena for better understanding.
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Introduction and Examples: Physical Models 3

Definition 1.1.1

An ODE is an equation consisting of an independent variable t, an

unknown function (dependent variable) y = y(t) and its derivatives up

to a certain order. Such a relation can be written as

f

(

t,y,
dy

dt
, · · · ,

dny

dtn

)

= 0. (1.1.1)

Here, n is a positive integer, known as the order of the differential

equation.

For example, first and second order equations, respectively, can be written

as

f

(

t,y,
dy

dt

)

= 0 and f

(

t,y,
dy

dt
,
d2y

dt2

)

= 0. (1.1.2)

We will be discussing some special cases of these two classes of

equations. It is possible that there will be more than one unknown

function and in that case, we will have a system of differential equations.

A higher order differential equation in one unknown function may be

reduced into a system of first order differential equations. On the other

hand, if there are more than one independent variable, we end up with

partial differential equations (PDEs).

1.2 Physical and Other Models

We begin with a few mathematical models of some real life problems and

present solutions to some of these problems. However, methods of

obtaining such solutions will be introduced in Chapter 3, and so are the

terminologies like linear and nonlinear equations.

1.2.1 Population growth model

We begin with a linear model. If y = y(t), represents the population size

of a given species at time t, then the rate of change of population
dy

dt
is

proportional to y(t) if there is no other species to influence it and there is

no net migration. Thus, we have a simple linear model [Bra78]

dy

dt
= ry(t), (1.2.1)
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4 Ordinary Differential Equations: Principles and Applications

where r denotes the difference between birth rate and death rate. If y(t0) =
y0 is the population at time t0, our problem is to find the population for all

t > t0. This leads to the so-called initial value problem (IVP) which will

be discussed in Chapter 3. Assuming that r is a constant, the solution is

given by

y(t) = y0er(t−t0) (1.2.2)

Note that, if r > 0, then as t → ∞, the population y(t) → ∞. Indeed, this

linear model is found to be accurate when the population is small and for

small time. But it cannot be a good model as no population, in reality, can

grow indefinitely. As and when the population becomes large, there will

be competition among the population entities for the limited resources like

food, space etc.

This suggests that we look for a more realistic model which is given

by the following logistic nonlinear model. The statistical average of the

number of encounters of two members per unit time is proportional to y2.

Thus, a better model would be

dy

dt
= ay−by2, y(t0) = y0. (1.2.3)

Here a,b are positive constants. The negative sign in the quadratic term

represents the competition and reduces the growth rate. This is known

as the logistic law of population growth. It was introduced by the Dutch

mathematical biologist Verhulst in 1837. It is also known as the Malthus

law.

Practically, b is small compared to a. Thus, if y is not too large, then

by2 will be negligible compared to ay and the model behaves similar to

the linear model. However, when y becomes large, the term by2 will have

a considerable influence on the growth of y, as can be seen from the

following discussion.

The solution of (1.2.3) is given by1

1

a
log

|y|

|y0|

∣

∣

∣

a−by0

a−by

∣

∣

∣
= t − t0, t > t0. (1.2.4)

Note that y ≡ 0 and y ≡ a
b

are solutions to the nonlinear differential

equation in (1.2.3) with the initial condition y(t0) = 0 and y(t0) =
a
b
,

1The reader, after getting familiarised with the methods of solutions in Chapter 3, should work out

the details for this and the other examples in this chapter.
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Introduction and Examples: Physical Models 5

respectively. Hence, if the initial population y0 satisfies 0 < y0 <
a
b
, then

the solution will remain in the same interval for all time. This follows

from the existence and uniqueness theory, which will be developed in

Chapter 4. A simplification of (1.2.4) gives

y(t) =
ay0

by0 +(a−by0)e−a(t−t0)
. (1.2.5)

t

y

a/b

a/2b

Fig. 1.1 Logistic map

In case 0 < y0 <
a

b
, the curve y(t) is depicted as in Fig. 1.1. This curve is

called the logistic curve; it is also called an S-shaped curve, because of its

shape. Note that
a

b
is the limiting population, also known as capacity of

the ecological environment. In this case, the rate of population
dy

dt
is

positive and hence, y is an increasing function. Since
d2y

dt2
= (a−2by)

dy

dt
,

we immediately see that it is positive if the population is between 0 and

half the limiting population, namely,
a

2b
, whereas, it is negative when the
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6 Ordinary Differential Equations: Principles and Applications

population crosses the half way mark
a

2b
. This indicates that if the initial

population is less than half the limiting population, then there is an

accelerated growth

(

dy

dt
> 0,

d2y

dt2
> 0

)

, but after reaching half the

population, the population still grows

(

dy

dt
> 0

)

, but it has now a

decelerated growth

(

d2y

dt2
< 0

)

.

When we analyse the case where the initial population is bigger than

the limiting population, we observe that
dy

dt
< 0 and

d2y

dt2
< 0. Thus, the

population decreases with a decelerated growth to the limiting population.

Remark 1.2.1

The estimation of the vital coefficients a and b in a particular

population model is indeed an important issue which has to be

updated in a period of time as they are influenced by other parameters

like pollution, sociological trends, etc. In a more realistic model, one

needs to consider more than one species, their interactions,

unforeseen issues like epidemics, natural disasters, etc., which may

lead to more complicated equations.

1.2.2 An atomic waste disposal problem

The dumping of tightly sealed drums containing highly concentrated

radioactive waste in the sea below a certain depth (say 300 feet) from the

surface is a very sensitive issue as it could be environmentally hazardous.

The drums could break due to the impact of their velocity exceeding a

certain limit, say 40 ft/sec. Our problem is to compute the velocity by

using Newton’s second law of motion and assess the level of safety

involved in the process. Let y(t) denote the position, at time t, of the

object, the drum, (considered as a particle) measured from the sea surface

(indicating y = 0) as a positive quantity. The total force acting on the

object is given by

F =W −B−D,

where the weight W = mg is the force due to gravity, B is the buoyancy

force of water acting against the forward movement and D= cV is the drag
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Introduction and Examples: Physical Models 7

exerted by water (it is a kind of resistance), where V =
dy

dt
, the velocity

of the object and c > 0 is a constant of proportionality. Thus, we have the

differential equation

d2y

dt2
=

1

m
F =

1

m
(W −B−cV ) =

g

W
(W −B−cV ), y(0) = 0. (1.2.6)

Equivalently,

dV

dt
+

cg

W
V =

g

W
(W −B), V (0) = 0. (1.2.7)

Equation (1.2.7) can be solved to get

V (t) =
W −B

c

(

1− e−
cg
W t
)

. (1.2.8)

Thus, V (t) is increasing and tends to W−B
c

as t → ∞ and the value

(practically) of
W −B

c
≈ 700.

The limiting value 700 ft/sec of velocity is far above the permitted

critical value. Thus, it remains to ensure that V (t) does not reach 40 ft/sec

by the time it reaches the sea bed. But it is not possible to compute t at

which time the drum hits the sea bed and one needs to do further analysis.

Analysis: The idea is to view the velocity V (t) not as a function of

time, but as a function of position y. Let v(y) be the velocity at height y

measured from the surface of the sea downwards. Then, clearly,

V (t) = v(y(t)) so that
dV

dt
=

dv

dy

dy

dt
= v

dv

dy
. Hence, (1.2.7) becomes











v

W −B− cv

dv

dy
=

g

W
,

v(0) = 0.

(1.2.9)

This is a first order non-homogeneous nonlinear equation for the velocity

v. Indeed, the equation is more difficult, but it is in a variable separable

form and can be integrated easily. We can solve this equation to obtain the

solution in the form

gy

W
= −

v

c
−

W −B

c2
log

W −B− cv

W −B
. (1.2.10)
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8 Ordinary Differential Equations: Principles and Applications

Of course, v cannot be explicitly expressed in terms of y as it is a

nonlinear equation. However, it is possible to obtain accurate estimates

for the velocity v(y) at height y and it is estimated that v(300) ≈ 45 ft/sec

and hence, the drum could break at a depth of 300 feet.

Tail to the Tale: This problem was initiated when environmentalists

and scientists questioned the practice of dumping waste materials by the

Atomic Energy Commission of USA. After the study, the dumping of

atomic waste was forbidden, in regions of sea not having sufficient

depths.

1.2.3 Mechanical vibration model

The fundamental mechanical model, namely spring-mass-dashpot system

(SMD) has applications in shock absorbers in automobiles, heavy guns,

etc. An object of mass m is attached to an elastic spring of length l which

is suspended from a rigid horizontal body. This is a spring–mass system.

Elastic spring has the property that when it is stretched or compressed

by a small length ∆l, it will exert a force of magnitude proportional to

∆l, say k∆l in the opposite direction of stretching or compressing. The

positive constant k is called spring constant which is a measure of stiffness

of the spring. We then obtain an SMD system when this spring–mass is

immersed in a medium like oil which will also resist the motion of the

spring–mass. In a simple situation, we may assume that the force exerted

by the medium on the spring–mass is proportional to the velocity of the

mass and in the opposite direction of the movement of mass. It is also

similar to a seismic instrument used to obtain a seismograph to detect the

motion of the earth’s surface.

Let y(t) denote the position of mass at time t, y = 0 being the position

of the mass at equilibrium and let us take the downward direction as

positive. There are four forces acting on the system, that is, F =W +R+
D+ F0, where W = mg, the force due to gravity; R = −k(∆l + y), the

restoring force; D, the damping or drag force and F0, the external applied

force, if any. Drag force is the kind of resistance force which the medium

exerts on the mass and hence, it will be negative. It is usually

proportional to the velocity, that is, D = −c
dy

dt
. At equilibrium, the

spring has been stretched a length ∆l and so k∆l = mg. Applying

Newton’s second law, we get
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Introduction and Examples: Physical Models 9

m
d2y

dt2
= −ky− c

dy

dt
+F0(t). (1.2.11)

That is,

m
d2y

dt2
+ c

dy

dt
+ ky = F0(t), m,c,k ≥ 0. (1.2.12)

This is a second order non-homogeneous linear equation with constant

coefficients and we study such equations in detail in Chapter 3. Such a

system also arises in electrical circuits, which we discuss next.

1.2.4 Electrical circuit

A basic LCR electrical circuit is shown in Fig. 1.2, and is described as

follows:

V

R

L

C
S

Fig. 1.2 A basic LCR circuit

By Kirchoff’s second law, the impressed voltage in a closed circuit equals

the sum of the voltage drops in the rest of the circuit. Let E(t) be the

source of electro motive force (emf), say a battery, I =
dQ

dt
be the current

flow, Q(t) the charge on the capacitor at time t. Then, the voltage drops

across inductance (L), resistance (R) and capacitance (C), respectively,

are given by L
dI

dt
= L

d2Q

dt2
, RI = R

dQ

dt
+

Q

c
. Thus, we obtain a similar

equation for Q as in (1.2.12):

L
d2Q

dt2
+R

dQ

dt
+

Q

c
= E(t). (1.2.13)
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10 Ordinary Differential Equations: Principles and Applications

More often, the current I(t) is the physical quantity of interest; by

differentiating (1.2.13) with respect to t, the equation satisfied by I is

L
d2I

dt2
+R

dI

dt
+

1

c
I =

dE

dt
(t). (1.2.14)

Mathematically, the equation is exactly same as the equation obtained in

the spring–mass–dashpot system. We can also see the similarity between

various quantities: inductance corresponding to mass, resistance

corresponding to damping constant and so on.

1.2.5 Satellite problem

Consider an artificial satellite of mass m orbiting the earth. We assume

that the satellite has thrusting capacity with radial thrust u1 and a thrust u2

which is applied in a direction perpendicular to the radial direction. The

thrusters u1 and u2 are considered as the external force F or control inputs

applied to the satellite.

The satellite can be considered as a particle P moving around the earth

in the equatorial plane. If (x,y)is the rectangular coordinate of the particle

P of mass m, then by Newton’s law, the equations of motion along the

rectangular coordinate axes are given by

mẍ = Fx, mÿ = Fy (1.2.15)

where, Fx and Fy denote the components of the force F in the directions

of the axes (see Fig. 1.3). It will be convenient to represent the motion in

polar coordinates (r,θ ), where,

x = r cosθ , y = r sinθ

We will resolve the velocity, acceleration and force of the particle into

components along the radial direction and the direction perpendicular to it.

Denote by u, v; a1, a2 and Fr, Fθ the components of velocity, acceleration

and force, respectively in the new coordinate system. The resultant of u

and v is also equal to the resultant of the components of ẋ and ẏ. Therefore,

by resolving parallel to the x-axis, we get

ẋ = ucosθ − vsinθ (1.2.16)
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