The Cambridge Handbook of Cognition and Education

This handbook reviews a wealth of research in cognitive and educational psychology that investigates how to enhance learning and instruction to aid students struggling to learn and to advise teachers on how best to support student learning. The handbook includes features that inform readers about how to improve instruction and student achievement based on scientific evidence across different domains, including science, mathematics, reading, and writing. Each chapter supplies a description of the learning goal, a balanced presentation of the current evidence about the efficacy of various approaches to obtaining that learning goal, and a discussion of important future directions for research in this area. It is the ideal resource for researchers continuing their study of this field or for those only now beginning to explore how to improve student achievement.

John Dunlosky is a professor of psychology in the Department of Psychological Sciences and Director of the Science of Learning and Education Center at Kent State University, USA. He received the Distinguished Scholar Award in 2010 from Kent State University and is a founder of the International Association for Metacognition.

Katherine A. Rawson is a professor of psychology in the Department of Psychological Sciences at Kent State University, USA. She has received numerous awards for her research, including the US Presidential Early Career Award for Scientists and Engineers, the Outstanding Research and Scholarship Award from Kent State University, and the Outstanding Early Career Award from the Psychonomic Society.
The Cambridge Handbook of Cognition and Education

Edited by
John Dunlosky
Kent State University

Katherine A. Rawson
Kent State University
Contents

List of Figures page viii
List of Tables ... xiii
List of Contributors xv

How Cognitive Psychology Can Inform Evidence-Based Education Reform: An Overview of The Cambridge Handbook of Cognition and Education
JOHN DUNLOSKY AND KATHERINE A. RAWSON

Part I Foundations
1 How the Learning Sciences Can Inform Cognitive Psychology KEITH SAWYER AND JOHN DUNLOSKY 17
2 Quackery in Educational Research DANIEL H. ROBINSON AND JOEL R. LEVIN 35

Part II Science and Math
3 Teaching Critical Thinking as if Our Future Depends on It, Because It Does DIANE F. HALPERN AND HEATHER A. BUTLER 51
4 Improving Students’ Scientific Thinking DAVID KLAHR, CORINNE ZIMMERMAN, AND BRYAN J. MATLEN 67
5 Spatial Skills, Reasoning, and Mathematics NORA S. NEWCOMBE, JULIE L. BOOTH, AND ELIZABETH A. GUNDERSON 100
6 Iterative Development of Conceptual and Procedural Knowledge in Mathematics Learning and Instruction BETHANY RITTLE-JOHNSON 124
7 Development of Fraction Understanding POOJA G. SIDNEY, CLARISSA A. THOMPSON, AND JOHN E. OPFER 148
22 Enhancing the Quality of Student Learning Using Distributed Practice
MELODY WISEHEART, CAROLINA E. KÜPPER-TETZEL, TINA WESTON, ALICE S. N. KIM, IRINA V. KAPLER, AND VANESSA FOOT-SEYMOUR 550

Part V Metacognition

23 Self-Regulation in Computer-Assisted Learning Systems
ROGER AZEVEDO, NICHOLAS V. MUDRICK, MICHELLE TAUB, AND AMANDA E. BRADBURY 587

24 Improving Students’ Metacomprehension Accuracy
THOMAS D. GRIFFIN, MARTA K. MIELICKI, AND JENNIFER WILEY 619

25 Calibration and Self-Regulated Learning: Making the Connections
DOUGLAS J. HACKER AND LINDA BOL 647

26 Teachers’ Judgments of Student Learning of Mathematics
KEITH W. THIEDE, STEVEN OSWALT, JONATHAN L. BRENDEFUR, MICHELE B. CARNEY, AND RICHARD D. OSGUTHORPE 678

27 Learning Strategies and Self-Regulated Learning
PHILIP H. WINNE AND ZAHIA MARZOUK 696

Index 716
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Visual representation of the “Earth is like a peach” analogy (after Matlen et al., 2011)</td>
</tr>
<tr>
<td>4.2</td>
<td>The control panel and two sample programs for discovering how the “mystery key” (labeled “RPT”) works on a simulated robot (shown in its “home” position in the center of the screenshot) (after Klahr, Fay, & Dunbar, 1993)</td>
</tr>
<tr>
<td>4.3</td>
<td>A typical item from a “high-stakes” state assessment of domain-general experimentation skills and knowledge</td>
</tr>
<tr>
<td>4.4</td>
<td>Typical computer-interface item for assessing children’s ability to design unconfounded experiments as part of their CVS training</td>
</tr>
<tr>
<td>5.1</td>
<td>(a) Illustration of the type of items used on the Thurstone mental rotation task; (b) A sample item from the Children’s Mental Transformation Task (from Gunderson, et al., 2012, p. 1233. Reprinted with permission from the American Psychological Association)</td>
</tr>
<tr>
<td>5.2</td>
<td>Proportional reasoning measure</td>
</tr>
<tr>
<td>5.3</td>
<td>Examples of core vs. culturally mediated principles of geometry (from Giofrè, et al., 2013, p. 117. Copyright 2013 by Elsevier. Reprinted with permission)</td>
</tr>
<tr>
<td>6.1</td>
<td>Schematic of four theoretical viewpoints on the causal relations between conceptual and procedural knowledge</td>
</tr>
<tr>
<td>6.2</td>
<td>Regression paths of the best-fitting structural equation model of the relations among conceptual and procedural knowledge in Study 1 (from Schneider, Rittle-Johnson, and Star, 2011. Reprinted with permission from the American Psychological Association)</td>
</tr>
<tr>
<td>6.3</td>
<td>Experiment 1 gain scores by condition for each item type (from Rittle-Johnson & Koedinger, 2009, p. 491. Copyright 2009 by the British Psychological Society. Reprinted with permission)</td>
</tr>
<tr>
<td>7.1</td>
<td>An illustration of children’s intuitions about mathematical patterns vs. difficulty reasoning about the formal symbolic fractional notation used to represent those magnitudes</td>
</tr>
<tr>
<td>7.2</td>
<td>Tasks for assessing knowledge of natural, whole number magnitudes</td>
</tr>
</tbody>
</table>
List of Figures

7.3 Example stimuli for tasks assessing infants’, children’s, and adults’
ability to represent and compare nonsymbolic ratios and proportions 156

7.4 Illustration of a task in which participants draw a diagram to
represent a fraction division problem 165

7.5 Fractions can be represented using area models (Panel A) and number
lines (Panel B) 169

8.1 Worked example of an electrical circuits troubleshooting task (after
Van Gog, Kester, & Paas, 2011; Van Gog et al., 2015) 185

8.2 Screenshot of a video modeling example (used in Hoogerheide, Van
Wermeskerken et al., 2016) in which it is demonstrated and explained
how to solve an electrical circuits troubleshooting task (the steps of
the procedure are presented on the slides) 186

8.3 Example of a self-explanation prompt (see bottom-left) and
illustration of the difference between a molar (left) and modular
(right) example (from Hilbert et al., 2008, reprinted with permission) 192

9.1 Example of teacher highlighting two sides of an equation through
gesture 215

9.2 Example of teacher demonstrating slope changes using iconic gesture
(from Alibali & Nathan, 2012, with permission from Taylor & Francis) 215

9.3 Examples of gesture strategies produced by children 218

9.4 Examples of the gesture strategies children were taught to produce in
Goldin-Meadow, Cook, and Mitchell (2009) 224

10.1 The RI-Val model of comprehension (from O’Brien & Cook, 2016) 247

10.2 Reading times in milliseconds for nonanomalous and anomalous target
and spillover sentences as a function of context conditions – (a) shared
vs. (b) distinguishing features (from Williams, Cook, & O’Brien, 2018) 251

10.3 Reading times in milliseconds for target and spillover sentences as
a function of consistency and passage position (early vs. late) – (a)
nonfantasy-related inconsistencies, (b) fantasy-related inconsistencies
(from Walsh, Cook, & O’Brien, 2018) 254

12.1 English language arts (ELA) performance for Grade 3 students with
diverse language backgrounds 309

12.2 Mathematics performance for Grade 3 students with diverse language
backgrounds 310

13.1 Hypothesized relationships among cognitive processes, notes, and
test performance (reprinted from Peverly et al., 2012, with permission
from John Wiley and Sons) 329

14.1 References to documents in undergraduate students’ short essays
about historical controversies as observed in the study by Rouet et al.
(1996, adapted with permission from the American Psychological
Association) 362

14.2 Mean number of idea units in students’ essays as a function writing
task and type of idea unit category in the study by Le Bigot and Rouet
(2007) 368
14.3 Model linking individual characteristics to multiple-text comprehension (Bråten et al., 2014)
371
15.1 Themes identified from Scammacca et al. (2016)
391
15.2 Graphic organizer demonstrating multiple strategies for word learning
397
15.3 Get the Gist graphic organizer
399
16.1 Examples of paintings and artists used by Kornell and colleagues (Kornell & Bjork, 2008; Kornell et al., 2010)
415
16.2 Average posttest score by concept repetition rate for the (a) self-regulated and (b) yoked groups in Carvalho and colleagues (2016; reprinted with permission)
420
16.3 Schematic representation of the mechanism proposed in Sequential Attention Theory (SAT) for how each sequence leads to attending to different properties of the studied materials (from Carvalho & Goldstone, 2017b. Reprinted with permission from the American Psychological Association)
422
17.1 Proportion of errors corrected on the final test based on feedback condition (no feedback, correct/incorrect, answer feedback) and the number of multiple-choice alternative answer choices (two, three, four) on an initial multiple-choice test (after Marsh et al., 2012)
440
17.2 The effect of feedback type (no feedback, correct answer feedback, explanation feedback) on repeated questions compared with transfer questions (from Butler, Godbole, & Marsh, 2013, p. 292. Adapted with permission from the American Psychological Association)
444
17.3 The ball and string problem, which tests a person’s understanding of curvilinear motion (after Kaiser, Jonides, & Alexander, 1986)
446
18.1 Frames from narrated animation on how a bicycle tire pump works
463
18.2 Cognitive theory of multimedia learning
464
18.3 Do people learn better when we add interesting but extraneous text?
467
18.4 Which instructional method leads to better learning about braking systems?
468
18.5 Which instructional method leads to better learning from an online slideshow?
469
18.6 Do people learn better when a CONTINUE button is added after each segment?
470
18.7 Do people learn better when they receive pretraining in the names and characteristics of the key elements?
471
18.8 Which instructional method leads to better learning from an online slideshow?
472
18.9 Do people learn better when an onscreen agent uses humanlike gestures or stands still?
19.1 Correct performance on a final free-recall test (Experiment 4a), a final cued-recall test (Experiment 4b), and a final recognition test (Experiment 4c) as a function of initial test type (from Glover, 1989. Adapted with permission from the American Psychological Association) 482

19.2 Enhancement of subsequent retrieval (recall) following initial recall vs. initial recognition of an item (from McDaniel & Masson, 1985. Reprinted with permission from the American Psychological Association) 482

19.3 Exam performance for identical and related questions as a function of initial quiz format (from Experiment 1 of McDaniel et al., 2012. Adapted with permission) 483

19.4 Exam performances from Experiments 1b and 4 of McDermott et al. (2014) as a function of quiz format and exam format (adapted with permission from the American Psychological Association) 485

19.5 Gamma correlations representing, for each participant in the reread and quiz conditions, respectively, the relationship between estimates of fact recall and actual recall for each section (after Little & McDaniel, 2015. Adapted with permission) 491

20.1 Illustration of the three common collaborative scenarios 503

20.2 Illustration of two levels of analysis within scenario 1 505

21.1 Example of a self-explanation prompt (Hilbert et al., 2008. Reprinted with permission) 529

21.2 Interconnected representation of a principle and multiple example cases (after Renkl, 2017b. Reprinted with permission from Springer Nature) 533

21.3 Two routes of transfer based on an interconnected representation of a principle and multiple cases (after Renkl, 2017b. Reprinted with permission from Springer Nature) 534

21.4 Example of assisted prompting by using fill-in-the-blanks self-explanations (from Berthold & Renkl, 2009. Reprinted with permission from the American Psychological Association) 536

22.1 A basic distributed practice research design 551

22.2 A complex distributed practice research design where three different learning schedules are compared against each other 555

23.1 Screenshot of MetaTutor 591

23.2 Examples of specific uses of multimodal multichannel data to investigate CAM processes with different CALSs 607

24.1 Overview of the standard metacomprehension paradigm (minus the shaded box) 620
<table>
<thead>
<tr>
<th>xii</th>
<th>List of Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2</td>
<td>A process model of metacognition during learning</td>
</tr>
<tr>
<td>24.3</td>
<td>An illustration of how test difficulty impacts absolute but not relative accuracy</td>
</tr>
<tr>
<td>26.1</td>
<td>Monitoring and control for students and teachers</td>
</tr>
<tr>
<td>26.2</td>
<td>Link between teacher judgment accuracy and student achievement</td>
</tr>
<tr>
<td>27.1</td>
<td>Example of standards and a motivational factor weighed when judging utility</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>A sample of critical thinking skills</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>A sample item from the Halpern Critical Thinking Assessment (HCTA)</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>A taxonomy for categorizing psychological investigations of aspects of science education, with representative examples of each type</td>
<td>69</td>
</tr>
<tr>
<td>6.1</td>
<td>Range of tasks used to assess conceptual knowledge</td>
<td>131</td>
</tr>
<tr>
<td>6.2</td>
<td>Limited empirical evidence relevant for identifying optimal ordering of instruction on concepts and procedures</td>
<td>136</td>
</tr>
<tr>
<td>6.3</td>
<td>Design of intervention conditions in Rittle-Johnson and Koedinger (2009)</td>
<td>138</td>
</tr>
<tr>
<td>7.1</td>
<td>Experimental design and findings from McCrink and Wynn (2007)</td>
<td>158</td>
</tr>
<tr>
<td>7.2</td>
<td>Common strategies for comparing fraction magnitudes among adults</td>
<td>161</td>
</tr>
<tr>
<td>11.1</td>
<td>Text genres in the writing to learn literature</td>
<td>271</td>
</tr>
<tr>
<td>11.2</td>
<td>Summary of review of empirical research</td>
<td>282</td>
</tr>
<tr>
<td>12.1</td>
<td>Sociodemographic information of Grade 3 general education children attending public schools in Massachusetts during the 2012/13 academic year</td>
<td>308</td>
</tr>
<tr>
<td>13.1</td>
<td>Selected questions from an unpublished note-taking questionnaire administered to college students ($N = 435$)</td>
<td>330</td>
</tr>
<tr>
<td>14.1</td>
<td>Two texts that form part of a 6th grade geography reading assignment. The texts are featured on two pages of an electronic textbook. The title Getting housing in Mumbai is displayed at the top of each page (our adaptation from French)</td>
<td>358</td>
</tr>
<tr>
<td>18.1</td>
<td>Evidence-based principles for the design of multimedia instruction</td>
<td>466</td>
</tr>
<tr>
<td>18.2</td>
<td>Portions of nonpersonalized and personalized text from a narrated animation on how the human respiratory system works</td>
<td>473</td>
</tr>
<tr>
<td>19.1</td>
<td>Indirect benefits of testing</td>
<td>488</td>
</tr>
<tr>
<td>20.1</td>
<td>Summary of three common approaches to examining collaborative learning</td>
<td>507</td>
</tr>
<tr>
<td>20.2</td>
<td>Mean proportion of segments recalled by experts, novices, and nonpilots as a function of individual or collaborative recall (after Meade, Nokes, & Morrow, 2009, p. 43. Copyright 2009 Psychology Press, an imprint of the Taylor and Francis Group. Reprinted by permission of the publisher)</td>
<td>511</td>
</tr>
<tr>
<td>22.1</td>
<td>Distributed practice studies of verbal learning</td>
<td>558</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.2</td>
<td>Distributed practice studies of motor skills</td>
<td>560</td>
</tr>
<tr>
<td>22.3</td>
<td>Distributed practice studies of intellectual skills</td>
<td>563</td>
</tr>
<tr>
<td>22.4</td>
<td>Distributed practice studies of social and emotional skills</td>
<td>565</td>
</tr>
<tr>
<td>22.5</td>
<td>Suggestions for implementing distributed practice into classroom instruction</td>
<td>571</td>
</tr>
<tr>
<td>23.1</td>
<td>Sample questions and data sources based on conceptual dichotomies about cognitive, affective, and metacognitive (CAM) self-regulated learning processes</td>
<td>598</td>
</tr>
<tr>
<td>25.1</td>
<td>Studies on factors that may contribute to calibration</td>
<td>652</td>
</tr>
<tr>
<td>25.2</td>
<td>Studies on improving calibration accuracy</td>
<td>658</td>
</tr>
<tr>
<td>25.3</td>
<td>Studies showing positive effects on accuracy and performance</td>
<td>662</td>
</tr>
<tr>
<td>25.4</td>
<td>Studies showing positive effects on accuracy but not performance</td>
<td>663</td>
</tr>
<tr>
<td>26.1</td>
<td>Illustrations of the relation between absolute and relative accuracy</td>
<td>680</td>
</tr>
<tr>
<td>26.2</td>
<td>Descriptive statistics of formative assessment scales and correlations with measures of judgment accuracy ($N = 16$)</td>
<td>688</td>
</tr>
<tr>
<td>27.1</td>
<td>COPES features of a task</td>
<td>699</td>
</tr>
</tbody>
</table>
Contributors

ROGER AZEVEDO, Department of Learning Sciences and Educational Research, University of Central Florida, USA

LINDA BOL, Educational Foundations and Leadership, Old Dominion University, USA

JULIE L. BOOTH, College of Education, Temple University, USA

AMANDA E. BRADBURY, Department of Psychology, North Carolina State University, USA

JONATHAN L. BRENDEFUR, Department of Curriculum, Instruction and Foundational Studies, Boise State University, USA

M. ANNE BRITT, Department of Psychology, Northern Illinois University, USA

HEATHER A. BUTLER, Department of Psychology, California State University, Dominguez Hills, USA

MICHELE B. CARNEY, Department of Curriculum, Instruction and Foundational Studies, Boise State University, USA

PAULO F. CARVALHO, Human-Computer Interaction Institute, Carnegie Mellon University, USA

ANNE E. COOK, Educational Psychology Department, University of Utah, USA

EMMALINE DREW ELISEEV, Department of Psychology and Neuroscience, Duke University, USA

JOHN DUNLOSKY, Department of Psychological Sciences, Kent State University, USA

ALEXANDER EITEL, University of Freiburg, Germany

VANESSA FOOT-SEYMOUR, Department of Psychology, LaMarsh Centre for Child and Youth Research, York University, Canada

SONIYA GADGIL, The Eberly Center for Teaching Excellence and Educational Innovation, Carnegie Mellon University, USA
List of Contributors

SUSAN GOLDIN-MEADOW, Department of Psychology and Department of Comparative Human Development, University of Chicago, USA

ROBERT L. GOLDSSTONE, Department of Psychological and Brain Sciences and Program in Cognitive Science, Indiana University, USA

THOMAS D. GRIFFIN, Department of Psychology, University of Illinois at Chicago, USA

ELIZABETH A. GUNDERSON, Department of Psychology, Temple University, USA

DOUGLAS J. HACKER, Department of Educational Psychology, University of Utah, USA

DIANE F. HALPERN, Claremont McKenna College and Minerva Schools at KGI, USA

IRINA V. KAPLER, Department of Psychology, LaMarsh Centre for Child and Youth Research, York University, Canada

ALICE S. N. KIM, Department of Psychology, York University, Canada; Rotman Research Institute of Baycrest, Canada

DAVID KLAHR, Department of Psychology, Carnegie Mellon University, USA

PERRY D. KLEIN, The Faculty of Education, Western University, Canada

JUDITH F. KROLL, Department of Psychology, University of California, Riverside, USA

CAROLINA E. KÜPPER-TETZEL, School of Social Sciences, Psychology, University of Dundee, Scotland

JOEL R. LEVIN, University of Arizona, USA

JERI L. LITTLE, Department of Psychology, Hillsdale College, USA; now at Department of Psychology, California State University, East Bay, USA

GIGI LUK, Harvard Graduate School of Education, USA

ELIZABETH J. MARSH, Department of Psychology and Neuroscience, Duke University, USA

ZAHIA MARZOUK, Faculty of Education, Simon Fraser University, Canada

BRYAN J. MATLEN, Department of Psychology, Carnegie Mellon University, USA

RICHARD E. MAYER, Department of Psychological and Brain Sciences, University of California, Santa Barbara, USA

MARK A. MC DANIEL, Department of Psychological and Brain Sciences, Washington University in St. Louis, USA

MARTA K. MIELICKI, Department of Psychology, University of Illinois at Chicago, USA
NICHOLAS V. MUDRICK, Department of Psychology, North Carolina State University, USA

NORA S. NEWCOMBE, Department of Psychology, Temple University, USA

TIMOTHY J. NOKES-MALACH, Department of Psychology and Learning Research and Development Center, University of Pittsburgh, USA

EDWARD J. O’BRIEN, Psychology Department, University of New Hampshire, USA

JOHN E. OPPER, Department of Psychology, The Ohio State University, USA

RICHARD D. OSGUTHORPE, College of Education, Boise State University, USA

STEVEN OSWALT, College of Education, Boise State University, USA

STEPHEN T. PEVERLY, Teachers College, Columbia University, USA

ANNA POTOCKI, Department of Psychology, Université de Poitiers, France

KATHERINE A. RAWSON, Department of Psychological Sciences, Kent State University, USA

ALEXANDER RENKL, Department of Psychology, University of Freiburg, Germany

J. ELIZABETH RICHEY, Human-Computer Interaction Institute, Carnegie Mellon University, USA

BETHANY RITTLE-JOHNSON, Department of Psychology and Human Development, Peabody College, Vanderbilt University, USA

DANIEL H. ROBINSON, University of Texas at Arlington, USA

JEAN-FRANÇOIS ROUET, Centre national de la recherche scientifique (CNRS), Poitiers, France

NIKOL RUMMEL, Institute of Educational Research, Ruhr-Universität Bochum, Germany

KEITH SAWYER, School of Education, University of North Carolina at Chapel Hill, USA

POOJA G. SIDNEY, Department of Psychological Sciences, Kent State University, USA

ELIZABETH A. STEVENS, Department of Special Education and The Meadows Center for Preventing Educational Risk, The University of Texas at Austin, USA

MICHIELLE TAUR, Department of Learning Sciences and Educational Research, University of Central Florida, USA

KEITH W. THIEDE, College of Education, Boise State University, USA

CLARISSA A. THOMPSON, Department of Psychological Sciences, Kent State University, USA
AARTJE VAN DIJK, Department of Teacher Training, Rotterdam University of Applied Sciences, the Netherlands

TAMARA VAN GOG, Department of Education, Utrecht University, the Netherlands

SHARON VAUGHN, Department of Special Education and The Meadows Center for Preventing Educational Risk, The University of Texas at Austin, USA

ELIZABETH M. WAKEFIELD, Department of Psychology, Loyola University Chicago, USA

TINA WESTON, Department of Psychology, LaMarsh Centre for Child and Youth Research, Centre for Aging Research and Education, York University, Canada

JENNIFER WILEY, Department of Psychology, University of Illinois at Chicago, USA

PHILIP H. WINNE, Faculty of Education, Simon Fraser University, Canada

MELODY WISEHEART, Department of Psychology, LaMarsh Centre for Child and Youth Research, Centre for Aging Research and Education, York University, Canada

AMIE D. WOLF, Teachers College, Columbia University, USA

CRISTINA D. ZEPEDA, Learning Research and Development Center, University of Pittsburgh, USA

CORINNE ZIMMERMAN, Department of Psychology, Illinois State University, USA