Contents

Preface

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xi</td>
</tr>
</tbody>
</table>

1 Introduction 1

1.1 Layered Intrusions and Their Volatiles 1

1.2 Hydromagmatic Processes as a Special Type of Hydrothermal Activity 2

1.3 Igneous Fluids and Platinum-Group Element Deposits in Layered Intrusions 4

1.3.1 The Conventional Magmatic Model for the Concentration of the PGE 5

1.3.2 The Hydromagmatic Model for the Concentration for the PGE 6

2 Layered Intrusions: An Overview 10

2.1 Cumulate Terminology and Its Problems 10

2.2 Processes of Accumulation of Crystals on the Floor of a Magma Chamber 11

2.3 Processes Occurring within the Crystal-Liquid Mush 15

2.3.1 Crystal Aging 15

2.3.2 Compaction 17

2.3.3 Crystallization of Interstitial Liquid and Subsolidus Re-Equilibration 17

2.3.4 Metasomatic Changes 19

2.4 Layered Intrusions and Their PGE Deposits: Examples 19

2.4.1 The Bushveld Complex 19

2.4.2 The Stillwater Complex 24

2.4.3 Skaergaard Intrusion 31

3 Magmatic Volatiles and Fluids 34

3.1 Introduction 34

3.2 Volatile Components of Magmas 34

3.2.1 H₂O and CO₂ 34

3.2.2 Sulfur 36

3.2.3 Halogens 38

3.3 Mineral Solubility Considerations 40

3.4 Volatile-Rich Silicate Liquids, Solute-Rich Volatile Fluids and Transitional Fluids 44

3.5 Application to Layered Intrusions 46
Contents

3.5.1 Volatile Concentrations in Parent Liquids 46
3.5.2 A Country Fluid Component? 47

4 Geochemistry of the Platinum-Group Elements 50
4.1 Introduction 50
4.2 Solubility of the PGE in Silicate Liquids 51
4.3 Aqueous Geochemistry of the PGE 52

5 Generation and Movement of Bubbles and Volatile Fluids in a Crystal-Liquid Mush 54
5.1 Bubble Nucleation 54
5.2 Bubble Growth 59
5.3 Bubble Migration in a Crystal Mush 64
5.4 Bubble Coalescence and 3-Phase Flow of a Continuous Fluid 66
5.5 Lateral Migration of Fluids 71

6 Halogens in Layered Intrusions 75
6.1 Introduction 75
6.2 Apatite Occurrence and Compositional Trends in Layered Intrusions 77
6.3 Associated Chilled Margin and Sill/Dyke Compositions 83
6.4 Chlorine and PGE Ore Grade 84
6.5 Apatite-Biotite Geothermometry 84
6.6 Chlorine Isotopes 86
6.7 Halogen Partitioning between Apatite, Silicate Liquid and Volatile Fluid 87
6.8 Causes of Halogen Variations in Apatite 90
6.8.1 Parent Magma Cl/F Variations 91
6.8.2 Trapped Liquid Effects 92
6.8.3 Temperature and Pressure Effects 92
6.8.4 Vapour Separation and Degassing of the Magma Chamber 95
6.8.5 Crystallization of Interstitial Hydrous Minerals 96
6.8.6 Vapour Refining in a Crystal Mush 98
6.8.7 External Sources for the Halogens 99

7 Melt and Fluid Inclusion Evidence 101
7.1 Introduction 101
7.2 Silicate Liquid Inclusions 101
7.2.1 Silicate Liquid Inclusions in the Stillwater Complex 101
7.2.2 Other Examples of Silicate Liquid Inclusions 104
7.3 Fluid Inclusions 105
7.3.1 Fluid Inclusions in the Stillwater Complex 106
7.3.2 Fluid Inclusions and Hydrosaline Melt Inclusions in Other Intrusions 110
7.4 The Origin of High-Salinity Brines and Halide Melts 111
7.5 Ore Element Concentrations in Fluid Inclusions 112
Contents

8 Pegmatoids, Pipes and Potholes
8.1 Introduction
8.2 Pegmatoids and Discordant Sulfide-Bearing Bodies
8.3 Iron-Rich Ultramafic Pegmatoids and Pipes of the Bushveld Complex
8.4 Bushveld Plutonic Diatreme
8.5 Existing Bushveld Pipe Petrogenetic Models
8.6 Other Examples of Mafic-Felsic Mineral Segregations and Pipes
8.6.1 Discordant Bodies in the Mantle and Lower Crust
8.7 A Metasomatic Model for Dunite Pipe and IRUP Formation
8.8 Potholes
9 The Effects of Volatiles on Mineral Stability and Volatile Fluxing
9.1 Introduction
9.2 The Effects of Volatiles on Liquidus Phase Relationships
9.3 Volatile Fluxing
9.4 Constitutional Zone Refining
9.5 Examples of Partial Melting and Metasomatic Effects in Layered Intrusions
9.5.1 The J-M Reef, Stillwater Complex
9.5.2 The Merensky Reef, Bushveld Complex
9.6 Summary of the Evidence for a Secondary Origin for Olivine or Chromite
10 Chromatographic Effects
10.1 Introduction
10.2 Offsets as Chromatographic Separations
10.3 Numeric Models of Ore Element Transport during the Degassing of a Compacting and Solidifying Crystal Pile
10.4 Example Model Results
11 Compaction-Driven Stratigraphic Traps and the Formation of Great Dyke-Type Deposits
11.1 Introduction
11.2 The Great Dyke
11.3 The Muni Muni Complex
11.4 Other PGE Occurrences at Ultramafic–Mafic Transitions
11.5 Summary and Discussion
11.6 Modelling Compaction
11.6.1 Compaction of a Crystal Pile
11.7 Compaction-Induced Porosity Changes and the Trapped Liquid Shift Effect
11.8 High Porosity Zones as Mineralizing Traps
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
<tr>
<td>12.1</td>
</tr>
<tr>
<td>12.2</td>
</tr>
<tr>
<td>12.3</td>
</tr>
<tr>
<td>12.4</td>
</tr>
<tr>
<td>12.5</td>
</tr>
<tr>
<td>12.6</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>13.1</td>
</tr>
<tr>
<td>13.2</td>
</tr>
<tr>
<td>13.2.1</td>
</tr>
<tr>
<td>13.2.2</td>
</tr>
<tr>
<td>13.2.2.1</td>
</tr>
<tr>
<td>13.2.2.2</td>
</tr>
<tr>
<td>13.2.3</td>
</tr>
<tr>
<td>13.3</td>
</tr>
<tr>
<td>13.4</td>
</tr>
<tr>
<td>13.5</td>
</tr>
<tr>
<td>13.5.1</td>
</tr>
<tr>
<td>13.6</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>14.1</td>
</tr>
<tr>
<td>14.2</td>
</tr>
<tr>
<td>14.3</td>
</tr>
<tr>
<td>14.4</td>
</tr>
</tbody>
</table>

References 232
Index 271

Colour plate section can be found between pages 146 and 147