Index

Note: Page numbers in italics indicate figures.

Activity–activity diagrams
 applied to Bushveld IRUP, 135, 135
 applied to chromitite formation, 203
 applied to Stillwater replacement features, 131

Apatite
 compositional trends in layered intrusions, 77–84
 effect of alteration, 79
 examples, 78
 J-M Reef, 79
 Merensky Reef, 81
 Apatite-biotite geothermometer, 84–6, 85

Basistoppen sill, 129
Bjerkreim–Sokndal intrusion
 Sr isotopes, 207

Borinite
 proxy for Stillwater and Bushveld parent magma, 47, 91

Bubbles
 capillary entrapment, 230
 critical percolation density, 66
 growth by fluidization, 60
 growth by matrix fracture, 62
 growth by matrix deformation, 62
 growth by pore liquid displacement, 60
 growth mechanisms, 59–63, 60–1, 63
 heterogeneous nucleation, 54, 57
 homogeneous nucleation, 54
 homogeneous nucleation rate, 57
 in sediments, 64
 movement in a mush, 64–6
 nucleation, 54–9, 55, 58
 supersaturation pressure, 56
 transition to continuous fluid, 66

Bushveld Complex
 apatite composition, 78, 80–1
 average PGE concentrations, 7
 Cl isotopes, 100

C country fluids, 48
diатreme, 123–6, 123–6
 sedimentary analog, 124–5
general geology, 19–24, 19–24
 IRUP, 118, 118
isotopic disequilibrium, 212, 214–15
Li isotopes, 211
Merensky Reef, 22, 151
metamorphic aureole, 48
PGE in rocks below PGE reefs, 7, 7, 228
PGE pipe metasomatic model, 133, 134
PGE pipes, 22, 119–22, 120, 122–3
Platreef, 22, 73, 73, 86, 211, 228
portholes, 136, 136
radiogenic isotopes, 210–11
silicate liquid inclusions, 104
stable isotopes, 211, 213
stratigraphy, 21
UG2 chromitite, 22, 24, 184

C isotopes. See Stable isotopes
Cadgerina dike, 83, 171
apatite composition, 80
Calcite. See Carbonate minerals
Calcite-H$_2$O-NaCl system, 43
Carbonate minerals, 42, 75, 106–7, 132, 201
Chlorite. See Halogens
Chromatographic models, 162–6
 numerical model results, 164–5
Chromatographic theory, 156–62, 158
 and ore metatal offsets, 156
 development of compositional zones, 160
Chromite
 evidence for a secondary origin, 154
 PGE concentrations, 193
 PGE in layered intrusion chromite, 195–7
 PGE in volcanic chromite, 191–5
 PGE partitioning into, 191
 PGM inclusions, 191
Chromitite evidence for fluids, 200
hydromagmatic models for PGE-sulfide associations, 204–6
origin by chromite slurry, 199
origin by incongruent flux melting, 200
origin by incongruent melting, 200
origin by magma hydration, 199
origin by magma mixing, 197
origin by metasomatic reactions, 200–1
origin by pressure changes, 198
thin seam examples, 197
Chromitite formation models, 197–201
hydromagmatic models, 199
metasomatic models, 202–3
orthomagmatic models, 198
Cl. See Halogens
Cl isotopes. See Stable isotopes
CO₂ concentration in magmas, 35
solubility, 35, 35
Compaction, 17
and Great Dyke-type PGE deposits, 187
and trapped liquid shift effect, 182–7
characteristic variable, 178
effect of density change, 180
high porosity zones as mineralization traps, 187
numerical model example, 179
theory, 176–82
Constitutional zone refining, 144–8, 145–6
and the Platinitova Reef, 148
Stillwater example, 145, 147
Country fluids
Bushveld Complex, 125–6
from basal aureoles, 47–9, 48
Critical point behaviour
in H₂O system, 45
in H₂O-rock system, 45, 45
Crystal accumulation mechanisms, 11–15, 11–15
crystal settling, 11
crystal slurries, 14
in situ crystallization, 13
magma plumes, 13
Crystal accumulation mechanisms, 11–15, 11–15
Crystal aging, 15–17
Sn-Pb system example, 16
Crystal coarsening. See Crystal aging
Crystal settling, 11
Crystal slurries, 14
anorthosites formed from, 137
Crystal slurries
lack of mineral lineation, 217
Cumulate terminology, 10–11
problems with, 10–11

Index

Diatreme, 123–6, 123–6
sedimentary analog, 124–5
Discordant bodies
mantle pipes, 132
PGE pipes from Italian Alps, 132
Dufek intrusion
apatite composition, 78, 80–1, 82
apatite habit, 78
Duluth Complex
apatite composition, 80
fluid inclusions, 111
F. See Halogens
Ferrar Basement sill
apatite composition, 80–1
First boiling, 54
Flourine. See Halogens
Fluid inclusions, 105–12, 154
Bushveld Complex, 110
ore element concentrations, 112
origins of, 111
Skaergaard intrusion, 110
Stillwater example, 106, 108–9
Forsterite-anorthite-silica-H₂O system, 149
Forsterite-silica-H₂O system, 148
Graphite, 75, 116
in PGE pipes, 121
in potholes, 136
in Stillwater Complex, 172
Great Dyke, 228
apatite composition, 78
general geology, 167–70, 168
Main Sulphide Zone, 169
stratigraphy, 169
Great Dyke-type PGE deposits
defined, 167
hydromagmatic model, 188
meg# shift, 175
orthomagmatic models, 174
role of compaction, 176
H isotopes. See Stable isotopes
H₂O concentration in magmas, 35
solubility, 35, 35
H₂O-NaCl system, 39
H₂O-NaCl-CaCO₃ system, 109
H₂O-rock system, 45
Halogen variability, 90–100
contamination, 99
effect of degassing, 95, 96
effect of hydrous mineral crystallization, 96
parent magma abundance, 91
P-T effects, 92, 94
trapped liquid effects, 92
vapour refining, 98, 99
Index

Halogens
Cl saturation in silicate liquid, 39
concentration in magma, 38–40
Mg-Cl and Fe-F avoidance in minerals, 76, 77
partitioning behaviour, 87–90, 88
relationship to PGE ore grade, 84, 84

Hf isotopes
Bushveld Complex, 211
Hf-Nd isotopes
mantle disequilibrium model, 133–6, 134

Hydromagmatic PGE concentration model, 6–8, 8

In situ crystallization, 13
Iron-rich ultramafic pegmatoids. See IRUP
IRUP, 118, 118–23
critique of hydrothermal model, 224
formation models, 126
metasomatic formation model, 133–6, 134
Isotope equilibration timescales, 221
Isotopic disequilibrium
Bushveld Complex, 212, 214–15
Kiglapait Intrusion, 215
mantle example applied to layered intrusions, 222
mantle examples, 218
sources of, 215
role of crustal fluid contamination, 217
Rum intrusion, 215
Skaergaard intrusion, 208, 209
Jimberlana
apatite composition, 80
Jimberlana intrusion, 172
J-M Reef, 6, 25, See also Stillwater Complex, J-M Reef
origin by volatile fluxing, 148–9, 148–51

Kap Edvard Holm Complex
metal offsets, 156
Kevitsa-Satovaara Complex
apatite composition, 82
Kiglapait intrusion, 76, 207
in situ crystallization, 15
Pb isotopic disequilibrium, 215
Klappsjö
apatite composition, 80–1
Koitelainen Complex
apatite composition, 82
Lac des Iles Complex, 74
apatite composition, 78, 80
podiform sulfide, 117
Lateral migration of fluids
Great Dyke, 72
Lac des Isles Complex, 74

Munni Munni Complex, 72
Platinova Reef, 71
Platreef, 73
Layered intrusions, 1
as subduction zone analog, 220
cumulate terminology, 10

Magma plumes, 13–14
Melt inclusions. See Silicate liquid inclusions
Merensky reef
origin by volatile fluxing, 151–4, 153
Merensky Reef, 151, See also Bushveld Complex,
Merensky reef
potholes, 136, 136
source of ore metals, 6, 227

Metal solubility
effect of Cl, 41
Fe example, 42
Mg example, 41
Metasomatism, 19
and PGE pipe formation, 127
and pothole formation, 138
mafic-felsic segregations, 129
pipe formation models, 133
Mineral solubility, 40–4
as a function of pH, 43, 44
Mt. Thirsty sill
apatite composition, 82
Munni Munni Complex, 228
apatite composition, 78
as chromatographic separations, 156
–62
Great Dyke, 72
Munni Munni Intrusion, 156
Skaergaard intrusion, 156
Os isotopes
Bushveld Complex, 211
mantle disequilibrium examples, 218, 219
Merensky Reef, 223
Ostwald ripening. See Crystal aging

O isotopes. See Stable isotopes
Offsets. See Ore metal offsets
Olivine
evidence for a secondary origin, 154
Ora Banda sill
apatite composition, 82
Ore metal offsets, 156
as chromatographic separations, 156–62
Great Dyke, 72
Munni Munni Intrusion, 156
Skaergaard intrusion, 156

Nd isotopes
Bushveld Complex, 210, 210
Skaergaard intrusion, 208, 208

Ora Banda sill
apatite composition, 82
Os isotopes
Bushveld Complex, 211
mantle disequilibrium examples, 218, 219
Merensky Reef, 223
Ostwald ripening. See Crystal aging
Index

274

Pegmatoids, 114–18, 115
S-enriched, 116, 117
Penikat Complex
apatite composition, 78, 80–1
PGE, 50
concentration in basalt, 51
melt concentrations, 50
micromegats, 51
solubility in hydrothermal fluids, 52
solubility in hydrothermal fluids, effect of Cl, 53
solubility in silicate liquids, effect of Fe and S, 51
solubility in silicate liquids, effect of oxygen fugacity, 51

PGM, 191
chromite association, 192
chromite association models, 193, 205
Plagioclase
bouyancy problem, 12
Platinum-group elements. See PGE
Platinum-group minerals. See PGM
Plate reef, 228
Porphyry hydrothermal systems
comparison with layered intrusions, 2–4
Potholes, 136, 136–9
as analog to seafloor pockmarks, 138, 139
as replacement features, 138
Bushveld examples, 136, 136

R-factor model, 5–6, 6
Rum intrusion, 207
chromitite seams, 197
Sr isotopic disequilibrium, 215
S, 36–7
concentration in magma, 36
partitioning behaviour, 37, 37
SCSS. See Sulfur concentration at sulfide saturation
Seafloor pockmarks, 138, 139
Second boiling, 54
Silica solubility, 40
effect of NaCl, 40
Silicate liquid inclusions, 101–5
inclusions in chromite, 101, 105
Skaergaard intrusion, 2, 31
apatite composition, 78
apatite compositions, 83
geology, 31
Isotopic disequilibrium, 208, 209
Nd isotopes, 208, 208–10
Platinaton Reef, 31, 166
Sr isotopes, 208–10, 208
ultramafic-felsic mineral segregations, 129
Slurries. See Crystal slurries
Snoopy’s doghouse effect, 13

Sr-Isotopes
Bushveld Complex, 210, 210
Skaergaard intrusion, 208, 208
Sr-Nd isotopes
mantle disequilibrium, 219, 221
Stable isotopes
Bushveld Complex, 211, 213
Cl isotopes, 47, 86, 86
Li isotopes, 211
Stillwater Complex
apatite composition, 78, 80–1
balloons, 27, 29
Cl isotopes, 100
country fluids, 48
fluid inclusions, 106, 108–9
G and H chromitite, 195, 196
general geology, 24
J-M Reef, 25
metamorphic aureole, 48
mineralization at ultramafic-mafic contact, 172
PGE in chromitites, 205
Picket Pin PGE deposit, 30
podiform sulfide, 117
silicate liquid inclusions, 101, 104, 105
stratigraphy, 26
ultramafic-felsic mineral segregations, 131
Stoke’s Law, 12
Subduction zone hydrothermal systems
Layered intrusions as analog for, 2
Sulfur. See S
Sulfur concentration at sulfide saturation, 36
Surface energy, 15, 55

Three phase flow, 64
and pegmatoid development, 67
basalt pipes, 70
Bond number, 69
bubbles to continuous fluid transition, 66–72
capillary number, 67
dendritic flow, 71
diffusion-limited aggregation (DLA), 68
diffusivity ratio, 69
infiltration styles, 67–8, 70
invasion percolation (IP) capillary fingering, 68
lateral migration of fluids, 71, 73
porosity waves, 66
role of compaction, 65
stable displacement, 67
Stefan number, 69
viscosity ratio, 67
Transitional fluids
defined, 46
in H2O-rock system, 45
Trapped liquid shift effect, 17–18, 182
 effect of compaction, 182–7, 186
UG2, 196, 204
 apatite composition, 81
 hydromagmatic petrogenetic model, 206, 212
 O isotopes, 212
 orthopyroxenite, 183
PGM, 193
PGM variations, 122
potholes, 136–7
source of ore metals, 6, 227
Sr isotopes, 212
Ultramafic-felsic mineral segregations, 129–32
 Skaergaard intrusion, 129
 Stillwater Complex, 130, 131

Index

Umvimeela dike, 83
 apatite composition, 80

Volatile fluxing, 143–4, 144
 J-M Reef, origin by, 148–9, 148–51
 Merensky Reef, origin by, 151–4, 153
Volatile
 Bushveld parent magma concentrations, 47
 effect on hawaiian lava crystallization, 143
 liquidus suppression, 141
 phase boundary shifts, 141–3, 142, 144
 Stillwater parent magma concentrations, 47
 summary of effects, 140
Water. See H₂O
 Windimurra intrusion
 apatite composition, 80, 82