HYDROMAGMATIC PROCESSES AND PLATINUM-GROUP ELEMENT DEPOSITS IN LAYERED INTRUSIONS

The role that hydrothermal fluids may have played during the crystallization of layered intrusions and the formation of the ore deposits they contain has long been debated. This book summarizes the evidence for fluid-crystal-liquid (hydromagmatic) interactions and their importance for the understanding of the formation of platinum-group deposits in layered intrusions. It discusses the composition of igneous fluids in mafic magmatic systems, the generation and movement of these fluids in layered intrusions, their impact in altering the mineralogy and composition of the originally precipitated assemblages, and their role in the transport of the platinum-group elements (PGE). Using examples from the Bushveld complex of South Africa and other intrusions, this book provides a comprehensive overview of the hydromagmatic model for the origin of various features of layered intrusions. It is a useful reference for academic researchers and professional geologists working on economic mineral exploration, layered igneous intrusions and hydrothermal metallogenesis.

ALAN BOUDREAU is Professor of Geology at Duke University and an expert on the origins of layered intrusions. He has worked on numerical modelling of crystallization processes such as crystal aging and compaction, and how they give rise to the variety of features observed in these intrusions. He is also interested in the role of igneous fluids in the petrogenesis of platinum-group element (PGE) deposits in layered intrusions, including the understanding of the interaction of igneous fluids with liquid-crystal assemblages to produce the observed features.
HYDROMAGMATIC PROCESSES
AND PLATINUM-GROUP
ELEMENT DEPOSITS IN LAYERED
INTRUSIONS

ALAN BOUDREAU

Duke University
For Kathleen, and the kids
Contents

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Layered Intrusions and Their Volatiles</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Hydromagmatic Processes as a Special Type of Hydrothermal Activity</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Igneous Fluids and Platinum-Group Element Deposits in Layered Intrusions</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1 The Conventional Magmatic Model for the Concentration of the PGE</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2 The Hydromagmatic Model for the Concentration for the PGE</td>
<td>6</td>
</tr>
<tr>
<td>2 Layered Intrusions: An Overview</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Cumulate Terminology and Its Problems</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Processes of Accumulation of Crystals on the Floor of a Magma Chamber</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Processes Occurring within the Crystal-Liquid Mush</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1 Crystal Aging</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2 Compaction</td>
<td>17</td>
</tr>
<tr>
<td>2.3.3 Crystallization of Interstitial Liquid and Subsolidus Re-Equilibration</td>
<td>17</td>
</tr>
<tr>
<td>2.3.4 Metasomatic Changes</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Layered Intrusions and Their PGE Deposits: Examples</td>
<td>19</td>
</tr>
<tr>
<td>2.4.1 The Bushveld Complex</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2 The Stillwater Complex</td>
<td>24</td>
</tr>
<tr>
<td>2.4.3 Skaergaard Intrusion</td>
<td>31</td>
</tr>
<tr>
<td>3 Magmatic Volatiles and Fluids</td>
<td>34</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>34</td>
</tr>
<tr>
<td>3.2 Volatile Components of Magmas</td>
<td>34</td>
</tr>
<tr>
<td>3.2.1 H₂O and CO₂</td>
<td>34</td>
</tr>
<tr>
<td>3.2.2 Sulfur</td>
<td>36</td>
</tr>
<tr>
<td>3.2.3 Halogens</td>
<td>38</td>
</tr>
<tr>
<td>3.3 Mineral Solubility Considerations</td>
<td>40</td>
</tr>
<tr>
<td>3.4 Volatile-Rich Silicate Liquids, Solute-Rich Volatile Fluids and Transitional Fluids</td>
<td>44</td>
</tr>
<tr>
<td>3.5 Application to Layered Intrusions</td>
<td>46</td>
</tr>
</tbody>
</table>
3.5.1 Volatile Concentrations in Parent Liquids 46
3.5.2 A Country Fluid Component? 47

4 Geochemistry of the Platinum-Group Elements 50
4.1 Introduction 50
4.2 Solubility of the PGE in Silicate Liquids 51
4.3 Aqueous Geochemistry of the PGE 52

5 Generation and Movement of Bubbles and Volatile Fluids in a Crystal-Liquid Mush 54
5.1 Bubble Nucleation 54
5.2 Bubble Growth 59
5.3 Bubble Migration in a Crystal Mush 64
5.4 Bubble Coalescence and 3-Phase Flow of a Continuous Fluid 66
5.5 Lateral Migration of Fluids 71

6 Halogens in Layered Intrusions 75
6.1 Introduction 75
6.2 Apatite Occurrence and Compositional Trends in Layered Intrusions 77
6.3 Associated Chilled Margin and Sill/Dyke Compositions 83
6.4 Chlorine and PGE Ore Grade 84
6.5 Apatite-Biotite Geothermometry 84
6.6 Chlorine Isotopes 86
6.7 Halogen Partitioning between Apatite, Silicate Liquid and Volatile Fluid 87
6.8 Causes of Halogen Variations in Apatite 90
6.8.1 Parent Magma Cl/F Variations 91
6.8.2 Trapped Liquid Effects 92
6.8.3 Temperature and Pressure Effects 92
6.8.4 Vapour Separation and Degassing of the Magma Chamber 95
6.8.5 Crystallization of Interstitial Hydrous Minerals 96
6.8.6 Vapour Refining in a Crystal Mush 98
6.8.7 External Sources for the Halogens 99

7 Melt and Fluid Inclusion Evidence 101
7.1 Introduction 101
7.2 Silicate Liquid Inclusions 101
7.2.1 Silicate Liquid Inclusions in the Stillwater Complex 101
7.2.2 Other Examples of Silicate Liquid Inclusions 104
7.3 Fluid Inclusions 105
7.3.1 Fluid Inclusions in the Stillwater Complex 106
7.3.2 Fluid Inclusions and Hydrosaline Melt Inclusions in Other Intrusions 110
7.4 The Origin of High-Salinity Brines and Halide Melts 111
7.5 Ore Element Concentrations in Fluid Inclusions 112
Contents

8 Pegmatoids, Pipes and Potholes 114
 8.1 Introduction 114
 8.2 Pegmatoids and Discordant Sulfide-Bearing Bodies 114
 8.3 Iron-Rich Ultramafic Pegmatoids and Pipes of the Bushveld Complex 118
 8.4 Bushveld Plutonic Diatreme 123
 8.5 Existing Bushveld Pipe Petrogenetic Models 126
 8.6 Other Examples of Mafic-Felsic Mineral Segregations and Pipes 129
 8.6.1 Discordant Bodies in the Mantle and Lower Crust 132
 8.7 A Metasomatic Model for Dunite Pipe and IRUP Formation 133
 8.8 Potholes 136

9 The Effects of Volatiles on Mineral Stability and Volatile Fluxing 140
 9.1 Introduction 140
 9.2 The Effects of Volatiles on Liquidus Phase Relationships 141
 9.3 Volatile Fluxing 143
 9.4 Constitutional Zone Refining 144
 9.5 Examples of Partial Melting and Metasomatic Effects in Layered Intrusions 148
 9.5.1 The J-M Reef, Stillwater Complex 148
 9.5.2 The Merensky Reef, Bushveld Complex 151
 9.6 Summary of the Evidence for a Secondary Origin for Olivine or Chromite 154

10 Chromatographic Effects 156
 10.1 Introduction 156
 10.2 Offsets as Chromatographic Separations 156
 10.3 Numeric Models of Ore Element Transport during the Degassing of a Compacting and Solidifying Crystal Pile 162
 10.4 Example Model Results 163

11 Compaction-Driven Stratigraphic Traps and the Formation of Great Dyke-Type Deposits 167
 11.1 Introduction 167
 11.2 The Great Dyke 167
 11.3 The Muni Muni Complex 170
 11.4 Other PGE Occurrences at Ultramafic–Mafic Transitions 172
 11.5 Summary and Discussion 174
 11.6 Modelling Compaction 176
 11.6.1 Compaction of a Crystal Pile 177
 11.7 Compaction-Induced Porosity Changes and the Trapped Liquid Shift Effect 182
 11.8 High Porosity Zones as Mineralizing Traps 187
12 Chromitites

12.1 Introduction

12.2 Volcanic Chromite

12.3 Chromitite in Layered Intrusions

12.4 Chromitite Formation Models

12.5 Chromitites as Metasomatic Features

12.6 Hydromagmatic Models for the PGE-Sulfide-Chromitite Association in Layered Intrusions

13 Isotopic Evidence

13.1 Introduction

13.2 Examples of Isotopic Variability

13.2.1 The Skaergaard Intrusion

13.2.2 Bushveld Complex

13.2.2.1 Bushveld Stable Isotopes

13.2.2.2 Isotopic Disequilibrium in the Bushveld Complex

13.2.3 Isotopic Disequilibrium in Other Intrusions

13.3 Explanations for the Isotopic Disequilibrium in Layered Intrusions

13.4 Evidence for the Late Introduction of a Crustal Isotopic Component

13.5 Evidence from Mantle Examples of Isotopic Disequilibrium

13.5.1 Layered Intrusions as a Subduction Zone Analogue

13.6 The Mantle Example Applied to Isotopic Disequilibrium in Layered Intrusions

14 Some Objections Considered

14.1 Introduction

14.2 Critique of the PGE Pipe Hydromagmatic Formation Models

14.3 Critique of the PGE Reef Hydromagmatic Formation Models

14.4 Future Work

References

Index

Colour plate section can be found between pages 146 and 147
Preface

The idea for this book originally began as a description of the hydrothermal model for the concentration of platinum-group elements (PGE) in layered intrusions. This is a model that is contrary to the majority opinion of those who work in layered intrusions, and acceptance requires overcoming a certain amount of cognitive dissonance with longstanding interpretations. However, much of the supporting evidence has grown stronger over time and the need to present a full and detailed description of the model is long overdue. Previous work by the author had shown that the evidence for hydrothermal petrogenetic models had grown beyond the ability of single papers and even extended review articles to cover the supporting evidence in a complete manner. Equally important is to answer some common criticisms of the model; it is common for the idea that the PGE were concentrated by magmatic fluids to be discounted in as little as one sentence. Thus, the idea for this book was conceived.

However, it soon became evident that such a book would need to include related evidence on the effect of volatiles on the crystallization of magmas. This includes growing evidence for re-melting of pre-existing minerals and metasomatic reactions involving fluids and the crystal pile. In many cases this also includes the role of crustal fluids and their effects on the isotopic character of the rocks in general and the growing evidence for isotopic disequilibrium. Indeed, one of the ideas expressed in this book is that large layered intrusions, and particularly the Bushveld Complex, are an excellent analogue for subduction zone hydrothermal systems. Both involve fluids derived from dehydrating underlying sediments that manage to preserve their isotopic character as they move through thick sequence of ultramafic rock to reach hotter rock where they may induce melting. These factors and more led to the expanded scope of this book.

It is common for many review books to be a collection of papers whose chapters are authored by perhaps several authors but the overall content of which is largely determined by one or more editors. This book is instead the product of a single author to present a unified view of the subject. In part, this is because the main ideas presented are very much a minority viewpoint. It is by no means meant to be the last word nor even to be correct in some details. However, it is felt that without a strong description of the hypothesis, future advancement will be haphazard at best.
An overview of the hydrothermal systems in layered intrusions and how it differs from well-known hydrothermal systems in porphyry systems is presented in Chapter 1, along with an overview of orthomagmatic and hydromagmatic models for the concentration of the PGE in layered intrusions. Chapter 2 discusses some of the problems of cumulate terminology with examples of how an originally precipitated crystal assemblage can be modified. Because many of the examples used in this book are from the Stillwater, Bushveld and Skaergaard intrusions, a brief overview of these three intrusions is also presented. Those who are not familiar with these intrusions may want to start here.

Chapter 3 presents a summary of volatiles in mafic magmas, but also discusses igneous fluids as hydrothermal solutions and mineral solubility considerations. Chapter 4 covers the geochemistry of the PGE in both magmas and hydrothermal fluids, the latter of which is still poorly known in high temperature solutions. Chapter 5 looks at bubble formation and the phenomenon of three phase flow in crystal-silicate liquid-volatile fluid systems. Chapters 6 and 7 summarize the halogen geochemistry evidence for fluid involvement and the evidence from silicate liquid and fluid inclusions, respectively.

The remaining chapters largely look at evidence for the role of fluids in the formation of specific features in layered intrusions. Chapter 8 discusses the formation of discordant features such as pegmatoids and PGE-bearing pipes. Chapter 9 looks at the role of fluids in altering the crystallization behaviour of magmas and volatile fluxing. Chapter 10 considers chromatographic theory and the origin of ore metal offsets. Chapter 11 discusses the role of compaction in forming stratigraphic traps for migrating fluids and the formation of Great-Dyke type deposits at ultramafic-mafic boundaries, and Chapter 12 discusses the potential role of fluids in the formation of chromitites and their associated PGE mineralization. Chapter 13 looks at isotopic evidence and compares examples of isotopic disequilibrium with that observed in mantle samples. Finally the last chapter looks at some common objections of the hydromagmatic interpretation and a response to these criticisms.

A note on the terminology and format of this book. Ideas or terms that may be unfamiliar with students or even some professionals are generally defined with italic font. Because a silicate liquid and a supercritical volatile fluid are both fluids in the physical sense, this report will reserve the terms silicate liquid or liquid to denote a silicate liquid (magma) in general and the terms melt or silicate melt to denote a silicate liquid produced specifically by the local melting of pre-existing crystals. The terms volatile fluid, fluid and vapour will be used interchangeably to define a volatile-rich fluid phase. If need, the term transitional fluid will be used to define those volatile-rich silicate liquids that can evolve into solute-rich volatile fluids without a phase transition. Finally, cumulate terminology (Wager et al., 1960) is not used in rock descriptions. As noted by a number of authors (Hunter, 1987; Higgins; 1991, 1998, 2002; McBirney and Hunter, 1995; McBirney, 2009) layered intrusion have undergone extensive recrystallization and cumulate terminology has interpretive implications that can have a pernicious effect on the understanding of the processes which formed the rocks. This is particularly true for understanding those rock whose compositions may have be influence by volatile fluids. Thus, this report will use
respectable but model-neural rock names with modifiers as necessary (e.g., granular harzburgite, melanorite).

This book required more than just the labour of the author. In particular, many thanks go out to reviewers of individual chapters: Steve Prevec, Edmond Mathez, Rais Latypov, James Mungall, James Webster and Jacob Hanley. Errors of fact, omission or conclusion are otherwise those of the author. Editorial assistance and support by Cambridge University Press editors and staff, including Sarah Lambert, Zoë Pruce, Harsha Vardhanan and Emma Kiddle, are much appreciated.