
Cambridge University Press
978-1-108-41558-3 — Abstract Recursion and Intrinsic Complexity
Yiannis N. Moschovakis 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

INTRODUCTION

This is the (somewhat polished) present state of an evolving set of lecture
notes that I have used in several courses, seminars and workshops, mostly
at UCLA and in the Graduate Program in Logic and Algorithms (MPLA) at
the University of Athens. The general subject is the theory of abstract (first-
order) recursion and its relevance to the foundations of the theory of algorithms
and computational complexity, but the work on this broad project is very
incomplete and so the choice of topics that are covered is somewhat eclectic.

The preliminary Chapter 1 gives a brief, elementary exposition of some
basic facts and examples and helps make the material which follows accessible
to students and researchers with varying backgrounds. After that, the book
naturally splits into two, roughly equal parts according to the title: Part I
(Chapters 2 – 3) on abstract recursion and Part II (Chapters 4 – 9) on intrinsic
complexity.

– Chapter 2 introduces recursive (McCarthy) programs on abstract struc-
tures and develops their elementary theory. There is little that is new here,
other than Vaughan Pratt’s very interesting nondeterministic algorithm for
coprimeness in Section 2E, but I do not know of another easily accessible,
self-contained and reasonably complete source for this material.

– Chapter 3 introduces the natural complexity measures for recursive pro-
grams and establishes their basic properties. There is some novelty in ap-
proach, especially as the complexity measures are defined directly for the
programs and so are independent of any particular “implementation of re-
cursion”; and there are also some new results, most notably Theorems 3B.9
and 3B.12 which are due to Anush Tserunyan and have (I think) substantial
foundational significance.

Part II is about the derivation of robust and widely applicable lower bounds
for problems (especially) in arithmetic and algebra, and perhaps the simplest
way to introduce my take on this is to give a fairly precise formulation of a
fundamental conjecture about an ancient object of mathematical study.

The Euclidean algorithm (on the natural numbers, using division) can be
specified succinctly by the recursive equation

ε : gcd(x, y) =

{

x, if y = 0,

gcd(y, rem(x, y)), otherwise,

www.cambridge.org/9781108415583
www.cambridge.org


Cambridge University Press
978-1-108-41558-3 — Abstract Recursion and Intrinsic Complexity
Yiannis N. Moschovakis 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

where rem(x, y) is the remainder in the division of x by y. It computes the
greatest common divisor of x and y when x, y ≥ 1 and it is an algorithm from
(relative to) the remainder function rem and the relation eq0 of equality with
0: meaning that in its execution, ε has access to “oracles” which provide on
demand the value rem(s, t) for any s and t �= 0 and the truth value of eq0(s).
It is not hard to prove that

cε(x, y) ≤ 2 log y ≤ 2 logx (x ≥ y ≥ 2),(∗)

where cε(x, y) is the number of divisions (calls to the rem-oracle) required for
the computation of gcd(x, y) by the Euclidean and logarithms are to the base
2. Much more is known about cε(x, y), but this upper bound suggests one
plausible formulation of the Euclidean’s (worst-case) weak optimality:

Main Conjecture. For every algorithm α from rem and eq0 which computes
gcd(x, y) when x, y ≥ 1, there is a number r > 0, such that for infinitely many
pairs (x, y) with x > y ≥ 1,

cα(x, y) > r logx,

where cα(x, y) is the number of calls to the rem-oracle that α makes in the
computation of gcd(x, y).

This is a classical fact about the Euclidean algorithm, taking for example
the pairs (Fn+3, Fn+2) of successive Fibonacci numbers, cf. Problems x1C.8,
x1C.9. The general case is open, probably not easy and certainly not precise
as it stands, without specifying what algorithms it is about and what it means
for an algorithm to call an oracle in the course of a computation.

Now, there are Turingmachines which compute gcd(x, y) making no oracle
calls at all, simply because gcd(x, y) is Turing computable—so that’s not it.

In fact, there is no generally accepted, rigorous definition ofwhat algorithms
are. This is not a problem when we study particular algorithms, which are
typically specified precisely in some form or other without any need to investi-
gate whether all relevant algorithms can be similarly specified. In Complexity
Theory—and especially when we want to establish lower bounds for somemea-
sure of computational complexity—the standard methodology is to ground
proofs on rigorously definedmodels of computation, such as Turing machines,
register or random access machines, decision trees, straight line programs,
etc., and sometimes also on specific representations of the input, e.g., unary
or binary notation for natural numbers, adjacency matrices for graphs, etc.
There is a problem with this practice, when we try to compare lower bound
results obtained for different models, typically attacked by establishing simu-
lations of one model by another, cf. van Emde Boas [1990]; and this problem
becomes acute when we want to prove absolute (or at least widely applicable)
lower bounds which are small, polynomial or even linear (in the length of the

www.cambridge.org/9781108415583
www.cambridge.org


Cambridge University Press
978-1-108-41558-3 — Abstract Recursion and Intrinsic Complexity
Yiannis N. Moschovakis 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 3

input) as in the Main Conjecture, generally less complex than the standard
simulations.

So there are two equally important aims of research in this area:

One is to derive lower bounds for mathematical problems; the other is to
develop a foundational framework in which one may be able to prove (or at
least argue convincingly) that these bounds are absolute, that they restrict all
relevant algorithms. The first of these naturally requires mathematical tools
from the area in which the problems arise; and the second inevitably involves
logic.
Recursion gets in the picture because there are both foundational arguments

and mathematical results which support the view that all elementary1 algo-
rithms can be faithfully expressed by recursive programs, so that lower bounds
established for them should be absolute, cf. Moschovakis [1984], [1989a],
[1998], [2001]. This connection has motivated much of the work reported
here, but it is not our topic.
Here I will take a different approach to the derivation and justification of

robust lower bounds, which is more widely applicable and does not tie us to
any specific foundational view of what algorithms are.
In Chapter 4, which is the heart of this book, we formulate three simple

axioms about algorithms in the style of abstract model theory. These are
bundled into the notion of a uniform process of an arbitrary (first order) struc-
ture: all concrete algorithms specified by computation models induce uniform
processes, as do their usual nondeterministic versions. Uniform processes can
“compute” functions that are not computable, they are not about that; but
they carry a rich complexity theory which, when applied to concrete algo-
rithms yields non-trivial lower bounds, in some cases optimal, absolutely or
up to a multiplicative constant.

For a sample result, suppose

A = (A,RA1 , . . . , R
A
k , φ

A
1 , . . . , φ

A
l ) = (A,Υ)

is a first order structure on the vocabulary Φ = {R1, . . . , Rk , φ1, . . . , φl},
suppose P ⊆ An is an n-ary relation on A and let Φ0 ⊆ Φ. From these data,
we will define a function

c = calls(Φ0)(A, P) : A
n → N ∪ {∞} = {0, 1, . . . ,∞},

1There are algorithms whose implementations print output (or drop bombs), ask “the user” if
she prefers business or coach class and may never terminate. In this book we confine ourselves to
pure, finitary algorithms which compute partial functions or decide relations from given partial
functions and relations, for which complexity theory is most fully developed. The extension of
most of what we say to algorithms with side effects or interaction requires combining the methods
we will use with classical domain theory, introduced by Scott and Strachey [1971] and richly
developed by Scott and many others since then, especially the early Plotkin [1977], [1983]. It is
not as different from what we will be doing as one might think, but we will not go into it here.

www.cambridge.org/9781108415583
www.cambridge.org


Cambridge University Press
978-1-108-41558-3 — Abstract Recursion and Intrinsic Complexity
Yiannis N. Moschovakis 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

the intrinsic calls(Φ0)-complexity function of P, such that if α is any (deter-
ministic or nondeterministic) algorithm from Υ which decides P, then for all
�x ∈ An,

(∗) c(�x) ≤ the number of calls to primitives in Υ0

that α must execute to decide P(�x) from Υ.

This is a theorem if α is expressed by a concrete algorithm from Υ so that,
in particular, the complexity measure on the right is precisely defined; it will
be made plausible for all algorithms, by a brief conceptual analysis of what
it means (minimally) to compute from primitives; and it is not trivial, e.g., we
will show that if x⊥⊥ y is the coprimeness relation on N and

c = calls(rem)((N, rem, eq0),⊥⊥ ) : N
2 → N,

then for infinitely many pairs (a, b) with a > b,

c(a, b) >
1

10
log log a.(∗∗)

This follows from the (much stronger) Theorem 6C.5, an abstract version
of one of the main results in van den Dries and Moschovakis [2004]. It
gives a (very) partial result towards the Main Conjecture, one log below what
we would like to prove—but Vaughn Pratt’s nondeterministic algorithm for
coprimeness in Theorem 2E.2 suggests that the conjecture may hold only for
deterministic algorithms.
The main tool for defining the intrinsic complexities and deriving lower

bounds for them is the homomorphismmethod, an abstract andmildly extended
version of the embeddingmethod developed in van denDries andMoschovakis
[2004], [2009]. We will use it in Chapters 5 – 8 to get somewhat strengthened
versions of some of the lower bound results about arithmetic in these two
papers and then again in Chapter 9 to get similar results in algebra. Few of
these applications in the last two Parts are new: mymain aim here is to explain
the homomorphism method, illustrate its applicability in two different areas
and (primarily) to identify some basic notions of the theory of computational
complexity which (perhaps) have not been noticed.
Notice that this is not a textbook on computability and complexity, a core
part of Computer Science which is covered in many excellent books including
the classical Papadimitriou [1994]; it is not a textbook on Turing computability
and recursion on N, a huge subject amply covered in classical texts like Kleene
[1952], Davis [1958] and Rogers [1967] and many more recent ones; and it
is definitely not a textbook on arithmetic and algebraic complexity, not even a
good introduction to these vast research areas about which I really know very
little. It is natural to assume for some of the discussion that the reader knows
something about these subjects, but the rigorous development of the material
is substantially self-contained and limited to a few results which (I hope)

www.cambridge.org/9781108415583
www.cambridge.org


Cambridge University Press
978-1-108-41558-3 — Abstract Recursion and Intrinsic Complexity
Yiannis N. Moschovakis 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 5

throw some light on the central problem of deriving and justifying absolute
lower complexity bounds.

The exposition is elementary, aimed at advanced undergraduates, graduate
students and researchers in mathematics and computer science with some
knowledge of logic, a good understanding of the basic facts about algorithms
and computability and an interest in foundational questions. Many of the
(roughly) 250 problems are very easy, to test understanding, but there are also
more challenging ones, sometimes marked with an asterisk ∗ and a few that I
cannot do, marked “Open Problem”.

I have tried hard to assign results to those who proved them and to give
correct and useful references to the literature, but this is not the place to look
for a history of recursion and its interaction with computability—another vast
and complex topic which is way out of my expertise and certainly not of the
moment.

Yiannis N. Moschovakis
Santa Monica, CA and Paleo Faliro, Greece

Acknowledgments.

My greatest debt is to Lou van den Dries, whose insights in van den Dries
[2003] led to a fruitful (and very pleasant) collaboration that produced van
den Dries andMoschovakis [2004], [2009] and ultimately led to Part II of this
book.
I am grateful to Vaughan Pratt and Anush Tserunyan for letting me include

in this book unpublished results of theirs; to Vasilis Paschalis and Tyler Arant
for chasing errors and typos in Parts I and II respectively—and I know they
must have missed some, it’s OK; and to my wife, always, and for many things
other than her help with this book.
To go farther than this, I would need to put down the many logicians,

philosophers and computer scientists who have informedmy understanding of
logic, recursion, algorithms and the connections among these subjects, includ-
ing StephenKleene, JohnMcCarthy, Dana Scott andmany, many others—too
long a list to put down here and certainly not unique to me.
Finally, I want to thank the hundreds of students who have taken courses or

wroteM.Sc. or Ph.D. Theses withme on these topics, mostly atUCLAand the
University of Athens, including the Graduate Program in Logic, Algorithms
and Computation (MPLA). It is sometimes said that we learn more from our
students than they learn from us and perhaps this is true of me; in any case,
there is no doubt that I have enjoyed the process, very much.

www.cambridge.org/9781108415583
www.cambridge.org

