Cambridge University Press
978-1-108-41532-3 - Scheduling and Control of Queueing Networks
Gideon Weiss
Index
More Information

Index

abandonment, 15, 348-360, 406
abandonment rate, 350, 357
arrival process, 3
arrival theorem, 133
backwards recurrence time, 27
balance equations, 127, 132, 173, 237, 262, 270, 355
detailed balance equations, 8,128
global balance equations, $35,38,128$
partial balance equations, 129,137 , $138,390,401,412$
bandit processes, 53-55
birth and death processes, 7-12, 105-107, 141, 336, 353, 360
birth and death queues, 7-12
bottleneck workload process, 303
Bramson's FCFS network, 165
Brownian bridge, 326, 329, 331
Brownian control problem, 275-278, 280, 285, 291, 298, 302-303, 309, 312, 319
Brownian motion, 102-104, 112-115
distribution of maximum, 113
multivariate, 111
Burke's theorem, 128
busy period, 33-34
exceptional first service bp, 34
busy time, 84
coefficient of variation, $16,32,68,79$, 265, 338
compatibility graph, 387, 412
compensation method, 224, 262-264
complete resource pooling, 283, 302, 394, 396, 407
complexity
\#P-hard, 391, 396
NP-hard, 46, 146, 240
continuous mapping theorem, 72,152 , 338
convergence, 76-77
almost sure, 72
in distribution, 72
in probability, 76, 81
law of the iterated logarithm, 76
weak, 72
convex majorization, 364,385
correlation, 96, 100, 237
covariance calculations, 153
Cox Process, see doubly stochastic
Poisson process
criss-cross network, 278-283, 308
customer average, 17
density dependent Markov chains, 366-369
departure process, $5,33,49,84,96,128$, 237
diffusion limits, 90-95, 150
diffusion process
Brownian bridge, 326
Ito calculus representation, 102
Kiefer process, 326, 329, 342
multivariate reflected Brownian motion, 111, 152
Ornstein-Uhlenbeck process, 99, 105, 337, 354
reflected Brownian motion, 104, 115
diffusion scaling, 86
distributional form of Little's law, 36, 391, 412
Donsker's theorem, 75, 77
doubly exponential rate, 370
doubly stochastic Poisson process, 367
efficiency driven service, 352
elementary renewal theorem, 23, 183
embedded Markov chains, 35-39

Cambridge University Press
978-1-108-41532-3 - Scheduling and Control of Queueing Networks
Gideon Weiss
Index
More Information

Index

equilibrium distribution, 27, 52, 67, 100, 139, 344, 356
ergodicity, 18, 19, 27, 128, 131, 170-175, 183
Erlang loss system, 4, 11, 21, 142
extreme allocation available, 204
FCFS-ALIS policy, 388-392
FCLT
Donsker's theorem, 75, 77
for random walks, 75
for renewal processes, 80
flowtime, 43
fluid limit, 88, 148, 178
fluid limit model, 180
fluid model equations, 180, 349
fluid model solutions, 180
fluid scaling, 86
fluid stability, 183
weak, 186
forward recurrence time, 27
Foster criterion, 174
free time, 273
FSLLN
for random walks, 74
for renewal processes, 80
general state space Markov processes, 170-175
generalized cut constraints, 318
Gittins index, 53-55
global FCFS, see time stamp policy
global stability region, 192-195
Halfin-Whitt regime, 333-347, 352-354, 358
Harris Markov process, 171
Harris positive recurrent, 171, 183
Harris recurrent, 171
hazard rate, 264, 349
head of the line policy, 84
head of the line proportional processor sharing, 192, 199
idle time, 84, 274
infinite bipartite matching, 392-403
directed matching, 403-406
link lengths, 397
matching rates, 397
stationary distribution, 395, 401
time-reversal theorem, 395, 400
uniqueness theorem, 394, 397
infinite sum of product forms, 224, 262
infinite virtual queues, 221-223, 249-252
input queued switch, 212-214
input-output matrix, 147, 162, 203, 216, 230, 242
insensitivity, 52, 100, 139
instability examples, 163-167
Israeli queue, 15
Ito integral, 116
Ito process, 116
Jackson networks, 125, 131
join shortest of d policy, 363-375
join the shortest queue, 261-264, 375-383
with jockeying, 270
K machine M repairmen model, 14
Kelly's lemma, 131, 141, 401
Kelly-type networks, 140, 192, 198, 306
Kendall's three field notation, 4
Kiefer process, 326, 329, 342
Kigman's bound, 67
Kumar-Seidman Rybko-Stolyar network, 166, 176, 197, 226
Kurtz theorem, 368
length biasing, 25-27
backwards recurrence time, 27
forward recurrence time, 27
length of the current interval, 27
likelihood ratio, see Radon-Nikodym derivative
Lindley's equation, 5, 13, 62, 67, 69
Lindley's integral equation, 66
linear complementarity problem, 146, 156
link lengths, 397
Little's law, 16-21
applications, 20
distributional form, 36, 391, 412
Loynes construction, 61-64, 69, 154, 398
Lu-Kumar network, 163-164, 192-195
Lyapunov functions, 168, 173, 187, 207
piecewise linear, 192-195
manufacturing system, 109-111, 239-240
matching rates, 397
maximum pressure policy, 203-205
application to MCQN, 211
fluid stability, 209
for input queued switch, 214
for network of switches, 216
non-preemptive, 210
non-splitting, 210

Cambridge University Press
978-1-108-41532-3 - Scheduling and Control of Queueing Networks
Gideon Weiss
Index
More Information

Index

parametrization, 208
rate stability, 206, 209, 210
maximum throughput, 199, 226, 275, 285, 305, 406
mean field representation, 364
multi-class queueing networks, 161-163
diffusion limits, 268
divergent, 186
fluid stability proofs, 187-192
global stability, 192
in balanced heavy traffic, 272-274
positive Harris recurrent, 183
rate stable, 186
stable under maximum pressure, 211
state space collapse, 268
unstable, 163
nominal allocation, 205, 273
NP-hard, 46, 146, 240
order statistics, 46
Ornstein-Uhlenbeck process, 99, 105, 337, 354
Palm measure, 27, 400
parallel skilled service system, 387
PASTA, 28-31, 36, 50, 67, 133, 135, 392
patience distribution, 348
Perron-Frobenius theorem, 126
petite set, 171
phase-type distributions, 35
piecewise deterministic Markov process, 26, 154, 170
piecewise linear Lyapunov functions, 192-195
policy
$c \mu, 53$
earliest due date, 192, 198, 199
first come first served, $4,32,49,165$,
$169,176,181,196,198,304,321$, 388
head of the line processor sharing, 198
last come first served, 4, 49, 52, 169
non-preemptive, 20
processor sharing, 4, 52
queue and idleness ratio, 408-411
shortest expected processing time first, 45
shortest processing time first, 43, 56
shortest remaining processing time
first, 47-49, 57
Smith rule, 53
time stamp, 192, 199
work conserving, 20
Pollaczek-Khinchine formula, 32, 36
positive matrices, 126
priority scheduling, 50-52
processing network, 200-203
product-form solution, 130, 131, 135,
137, 143, 390, 395, 405
push-pull network, 226-228, 232-235
quality and efficiency driven service, 352 , 358-360
quality driven service, 352
quality of service, 407
quasi birth and death queues, 35
queue and idleness ratio policy, 408-411
queue dynamics, $84,145,161,201,390$
queue with balking, 15
queue with vacations, 15
queueing system
./G/ ∞ queue, 325-331
./G/s queue, 338-347
G/D/m queue, 98
G/G/ ∞ queue, $98-100$
G/G/n+G queue, 348-352
G/G/s queue, 344, 346
G/G/1 queue, 61-68, 70, 83-97, 107
G/M/ ∞ queue, 99
G/M/s queue, 338
G/M/1 queue, 37-39
M/G/ ∞ queue, 100
M/G/1 queue, 16, 31-33, 35-37
M/M/ $/ \infty$ queue, 10,99
$\mathrm{M} / \mathrm{M} / n+\mathrm{G}$ queue, $354-360$
$\mathrm{M} / \mathrm{M} / n+\mathrm{M}$ queue, $352-354$
M/M/s queue, 11, 333-337
M/M/1 queue, 9, 52, 130
Radon-Nikodym derivative, 114
random walk, 64-67, 73-78
re-entrant line, 163, 190-192, 196, 225,
236, 239, 244, 254
reflected Brownian motion, 104, 115
multivariate, 111, 152
reflection principle, 112
regeneration times, 34
reneging, 15 , see abandonment
renewal function, 23,40
renewal process, 23, 79-81
delayed, 28
renewal reward theorem, 25-27, 33, 40, 109, 118
renewal theory, 23-25

CAMBRIDGE

Cambridge University Press
978-1-108-41532-3 - Scheduling and Control of Queueing Networks
Gideon Weiss
Index
More Information

Index

resource pooling, 10, 41, 264-265, 283,
302, 394, 396, 406
reverse Leontief network, 210
ride-sharing, 403
routing matrix, 125, 218
\#P-hard, 391, 396
scheduling, 42-47
batch scheduling, 43
stream scheduling, 46
service regime
efficiency driven, 352
quality and efficiency driven, 352 , 358-360
quality driven, 352
simulation, 6-7, 12, 258, 412
Skorohod embedding, 77, 121
Skorohod reflection, 86-88, 281, 310, 381
oblique, 111-112, 147-148, 188
two-sided, 107-109, 288
small set, 171
snapshot principle, 34
sojourn time, 6, 9, 18, 31, 33, 37, 50, 52,
133-134, 264, 321, 360, 371, 383
square root staffing, $335,352,376$
stability, 19, 61, 130, 155, 170-175, 183, 187, 389
rate stability, 18, 126, 146, 174, 186, 206
standby customer, 41
state space collapse, 266-268, 283, 302, 411
static planning problem, 205, 209, 230, 409
dual, 303
stationary probabilities, $8,130,131,135$, 137, 224, 264, 352, 363, 390, 395, 405
stationary process, 18
stochastic integral, see Ito process
Stone's theorem, 106, 336, 354
stopping time, $24,55,78,103,118,170$
strict Leontief network, 204
strong approximation, 78-79, 97-98
strong Markov property, 103, 113
taxi stand model, 13
threshold policy, 268, 282, 310
tightness, 72
time average, 17
time change lemma, $72,80,152,154$,
338, 379, 382
time reversibility, 8, 27, 127-129
time-reversal, 104, 131, 395, 400
traffic equations, 126
two sided regulator, 107-109, 117-119
uniform integrability, 24, 40, 183, 185
uniformly small set, 171
utilization, 21, 205, 221, 255
virtual machine, 167
waiting time, $5,6,32,51,62,67,350$, 356-358, 363
Wald's equation, 24, 40, 52, 133
Wiener process, see Brownian motion
Wiener-Hopf decomposition, 66
work conservation, 21-23, 32, 84, 147, 162, 189
workload formulation, 275, 280, 287, 291, 297

