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Part I

The Single Queue

In the first part of this book we introduce the single queue, a system in

which arriving customers require a single service from the system, and this

service is provided by one or more servers. We study properties of some

special queueing systems that are amenable to exact analysis.

In Chapter 1 we define the single queue, introduce notations and some

relations and properties, and present the most tractable examples of queues,

so-called birth and death queues . We also discuss simulation of queues.

In Chapter 2 we study a queueing system with memoryless Poisson

arrivals and generally distributed processing times, the so-called M/G/1

system. Performance measures of this system can be derived exactly, using

the principle of work conservation, and the property of PASTA (Poisson

arrivals see time averages).

Chapter 3 considers the scheduling of batches of jobs, and of stationary

streams of jobs. We discuss priority queues and other service policies.
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1

Queues and Their Simulations, Birth and

Death Queues

In this chapter we start our exploration of queues. We describe a single

queue consisting of a single stream of customers where each of them re-

quires a single service operation and this service is provided by a single

service station, manned by one or more servers, operating under some ser-

vice policy. We introduce notation to describe such queues and derive two

basic relationships: the first presents the queue length as arrivals minus

departures, the second, Lindley’s equation, provides a recursive calculation

of waiting times of successive customers. We discuss simulation of queues

using the Lindley’s equation recursion. Next we study examples of sin-

gle queues with Poisson arrivals and exponential service times, which are

modeled by Markovian birth and death processes, and derive the stationary

distribution of the queue length, using detailed balance equations.

1.1 The Single Queue

A queueing system consists of two parts: on the demand side there are the

streams of customers, each with its service requests; on the service side

there are one or more service stations, with one or more servers in each. We

start our exploration of queueing theory by considering a single stream of

customers, each requiring a single service operation, and a single service

station that provides the service. We refer to the sequence of arrivals and

services as the primitives of the system. We model the customer arrivals

by a stochastic point process A(t), t > 0, which counts the number of

arrivals in the time interval (0, t]. We let An, n = 1, 2, . . . be the arrival

times of the customers, and T1 = A1, Tn = An − An−1, n = 2, 3, . . . be

the interarrival times. We have that A(t) = max{n : An ≤ t}. We will

frequently assume that Tn are independent identically distributed random

variables with distribution F and finite expectation E(T1) = 1/λ, so that

A(t) is a renewal process, with arrival rate λ. In particular, if interarrivals
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4 Queues and Their Simulations, Birth and Death Queues

are exponentially distributed, then A(t) is a Poisson process and we say

that arrivals are Poisson with rate λ.

Customer n requires service for a duration Xn, n = 1, 2, . . . . We will

always assume that the sequence of service durations is independent of the

arrival times, and service durations are independent identically distributed

with distribution G and finite expectation m = 1/µ.

The customers are served by a single service station, which may have one

or more servers that provide the service. Typically, an arriving customer

will join a queue and wait, and will then move to a server and be served.

A common notation introduced by D.G. Kendall describes the single

queue by a three-field mnemonic: the first describes the arrival process,

the second the service distribution, and the third the service station. Thus

M/M/1 denotes a queue with Poisson arrivals, exponential service times,

and a single server, where M stands for memoryless. D/G/s denotes a queue

with deterministic arrivals, generally distributed independent service times,

and s servers. G/G/∞ is a queue with independent, generally distributed in-

terarrival times, general independent service times, and an infinite number

of servers, which means that arriving customers start service immediately

and there is no waiting. G/·/· will denote a queue that has a general station-

ary sequence of interarrival times. If the system can only contain a limited

number of customers at any time, this limit is sometimes added as a fourth

field. Thus, M/M/K /K is a queueing system with Poisson arrivals, expo-

nential service times, K servers, and a total space for K customers. This

system is the famous Erlang loss system, which Erlang has used to model

a telephone exchange with K lines. In this system, when all the lines are

busy, arriving customers are lost.

The interaction between the customers described by A(t), t > 0 and

Xn, n = 1, 2, . . . on the one hand and the service station on the other hand

creates waiting and queues. To describe this interaction we need to specify

also the service policy. We list a few commonly used service policies: FCFS

– first come first served (also known as FIFO – first in first out) in which

customers enter service in order of arrival; LCFS – last come first served

(sometimes called LIFO – last in first out) in which whenever a customer

arrives it enters service immediately, sometimes preempting the service of

an earlier customer; PS – processor sharing, the station divides its service

capacity equally between all the customers in the system.

The following two very simple relationships are the basis of much of

queueing theory. The first describes the dynamics of customers. We denote

the queue length by Q(t), which is the number of customers in the system at

time t, including both those waiting for service and those being served. We
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1.1 The Single Queue 5

also denote by D (t) the number of customers that have left the system in

the time interval (0, t], which we call the departure process. Then we have

the obvious relation

Q(t) = Q(0) +A(t) − D (t), (1.1)

i.e. what is in the system at time t is what was there initially at time 0, plus

all arrivals, minus all departures. The queueing dynamics are illustrated in

Figure 1.1.

t0

Q (0)

Q (t)

D (⋅)

Q (0)+A(⋅)

Figure 1.1 Queue length is arrivals minus departures.

The second relation calculates the waiting time of a customer under

FCFS, and is known as Lindley’s equation. We denote by Vn the waiting

time of the nth arriving customer, from his arrival time to the start of

service. For a single server operating under FCFS, we then have:

Vn+1 = (Vn + Xn − Tn+1)+, (1.2)

where (x)+ = max(0, x) is the positive part of x. We explain this relation:

Customer n departs the system Vn + Xn time units after his arrival, while

customer n + 1 arrives Tn+1 time units after the arrival of customer n. If

Tn+1 exceeds Vn + Xn , then customer n + 1 will enter service immediately

and not wait. If Tn+1 is less than Vn + Xn , then customer n + 1 will wait

Vn + Xn −Tn+1. This proves (1.2). Lindley’s equation is illustrated in Figure

1.2.
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6 Queues and Their Simulations, Birth and Death Queues

tAn
An+1 Am Am+1

Vn Vm

Vm+1

Xn Xm

Tm+1Vn+1 = 0Tn+1

Figure 1.2 Waiting time calculation using Lindley’s equation.

1.2 Simulation of a Queue

Simulation is a powerful tool for studying queueing systems. The detailed

analysis of many queueing systems is intractable, but various performance

measures of the queues can be estimated by simulation. There is a rich theory

of how to use simulation, which we will not cover in this text; however, we

suggest some books in the sources in Section 1.4. Here we indicate only the

elementary method that can be used for simple explorations by the reader.

Thinking of simulation is also a way of getting a different view from what

can be obtained from theorems and equations.

Recursive relations such as Lindley’s equation can be used to simulate

the queues. In the case of a single queue with a single server, operating

under FCFS, the simulation will work as follows: Initialize the system with

the time at which the server will be available after serving all the customers

present at time zero. Thereafter, generate successive interarrival and service

times for successive customers, and use these to obtain arrival time, service

start time, and departure time of successive customers. From this, obtain

the waiting time and sojourn time (we define sojourn time as waiting plus

service, or more generally, time from arrival to departure) of each customer.

Furthermore, by counting arrivals minus departures, the queue lengths at

any time can be obtained.

Example 1.1 The following tables illustrate part of a simulation of a

queue. In the first table we start from the 17th customer who arrives at

time 39.1, and the server is available to start serving this customer at

time 42.8. We denote by Sn the start of service of customer n, by Dn his

departure, by Wn his sojourn time, and by Vn his waiting time before being

served. The simulation then proceeds as follows. Successive interarrivals

Tn and service requirements Xn are generated pseudorandomly from the

interarrival and service time distributions, and we then calculate recursively:

An = An−1 + Tn , Sn = max(An, Dn−1), Vn = Sn − An , Dn = Sn + Xn ,

Wn = Vn + Xn . The round-off numbers are:
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1.3 Birth and Death Queues 7

Customer Tn An Xn Start Depart Sojourn Wait

17 39.1 2.2 42.8 45.1 6.0 3.8

18 2.8 41.9 2.7 45.1 47.7 5.9 3.2

19 4.3 46.1 1.0 47.7 48.7 2.6 1.6

20 2.5 48.6 0.3 48.7 49.0 0.4 0.1

21 4.1 52.8 1.5 52.8 54.2 1.5 0.0

22 4.8 57.6 2.0 57.6 59.5 2.0 0.0

23 1.3 58.9 3.9 59.5 63.5 4.6 0.6

The second table calculates the queue length. Order all the arrival and

departure times, attaching 1 to each arrival and −1 to each departure. The

queue length is then obtained, by adding the initial queue length and all

the +1’s and −1’s up to each time t. The table lists times of arrival and

departure, the identity of the customer that arrives or departs (with positive

sign for arrival and negative sign for departure), and the queue length at the

time of this event. The queue lengths are plotted in Figure 1.3.

Time 39.1 41.9 42.1 42.8 45.1 46.1 47.7 48.6 48.7

Customer 17 18 -15 -16 -17 19 -18 20 -19

Queue 3 4 3 2 1 2 1 2 1

Time 49.0 52.8 54.2 57.6 58.9 59.5 59.8 61.6 63.5

Customerr -20 21 -21 22 23 -22 24 25 -23

Queue 0 1 0 1 2 1 2 3 2

5040 60

2

4

Q (t)

t

Figure 1.3 Simulation of queue length.

1.3 Birth and Death Queues

We now consider queues with Poisson arrivals and exponential service

times. For such a queue, at any time t, the remaining time to the next arrival

is exponentially distributed, as are also the remaining processing times of all

the customers present in the system, either waiting or currently in process.

All these times are independent of anything that happened prior to t. As a
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8 Queues and Their Simulations, Birth and Death Queues

result, the queue length process Q(t) is a continuous time Markov chain,

with states m = 0, 1, 2, . . . . Furthermore, when there are m customers in

the system, Q(t) = m, the next event to happen will, with probability 1,

be either a single arrival or a single service completion and departure, so

the state will change by ±1. Such queues are called birth and death queues.

They are fully described by the transition rates

q(m,m + 1) = λm, q(m,m − 1) = µm . (1.3)

Here λm , the birth rate, is the rate at which arrivals occur when there are

m customers in the system, and µm , the death rate, is the rate at which

departures occur when there are m customers in the system. Note, for

Poisson arrivals λn = λ, but letting the birth rate depend on the state allows

for more general models, some of which we will encounter soon.

A major descriptor of the queueing process Q(t) is its stationary distri-

bution,

π(m) = lim
t→∞
P(Q(t) = m), m ≥ 0, (1.4)

provided these limits exist. This is sometimes called the limiting or long-

run distribution, since it describes the state of the process after a time at

which it no longer depends on the initial state. We will define stability of

the queueing system if such a stationary distribution exists.

Continuous time birth and death processes are time reversible, and their

stationary probabilities, π(m) = limt→∞ P(Q(t) = m), satisfy the detailed

balance equations:

π(m)q(m,m+1) = π(m+1)q(m+1,m), i.e. π(m+1) = π(m)
λm

µm+1

. (1.5)

We will discuss reversibility and balance equations in greater detail in Sec-

tion 8.3. To interpret (1.5), note that it equates the rate at which transitions

from m to m+1 occur, to the rate at which transitions back from m+1 to m

occur. These rates are sometimes referred to as flux, borrowing a term from

electricity networks. The detailed balance equations say that at stationarity

these must be equal. From the detailed balance equations (1.5) we obtain

the stationary distribution of a general birth and death queue:

π(m) = π(0)
λ0λ1 · · · λm−1

µ1µ2 · · · µm
, (1.6)

where π(0) is obtained as the normalizing constant. The necessary and

sufficient condition for ergodicity (irreducibility and positive recurrence of

the Markov chain, see later Definition 2.4) is that the normalizing constant
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1.3 Birth and Death Queues 9

is > 0, i.e. that the sum of the terms on the r.h.s. of (1.6) converges. In that

case, we say that the queue is stable.

We now describe several important models of birth and death queues. We

use (1.6), to derive their stationary distributions. It is customary to denote

by ρ the offered load of the system, which is the average amount of work

that arrives at the service station per unit of time: if arrivals are Poisson with

rate λ and service is exponential with rate µ then average service time is

m = 1/µ, and the average amount of work arriving per unit time is ρ = λ/µ.

Example 1.2 (The M/M/1 queue) The M/M/1 queue is the simplest queue-

ing model, for which almost every property or performance measure can be

expressed by a closed form formula. Arrivals are Poisson at rate λ, service

is exponential at rate µ, and there is a single server. Figure 1.4 illustrates

the states and transition rates of Q(t).

n⋯ ⋯0 1 2 3

µµµµµ

λ λ λ λ λ

Figure 1.4 The M/M/1 queue, states and transition rates.

From (1.6) we have immediately:

Stationary distribution of the M/M/1 queue:

π(n) = (1 − ρ)ρn, n = 0, 1, 2, . . . , ρ < 1.
(1.7)

The queue is stable if and only if ρ < 1, and the stationary distribution of the

queue length is geometric with parameter 1− ρ (denoted ∼ Geom0(1− ρ)),

and mean
ρ

1−ρ
.

Theorem 1.3 The sojourn time of a customer in the stationary M/M/1

queue under FCFS is exponentially distributed with rate µ − λ, Wn ∼

Exp(µ − λ), with mean 1
µ−λ

.

Proof If a customer arrives and there are j customers in the queue then his

waiting time will be the sum of j i.i.d. exponential rate µ random variables,

and his sojourn time will be the sum of j+1; this has an Erlang distribution.

The probability that there are j customers in the queue is (1 − ρ)ρ j . So the

pdf of his sojourn time fW (t) is

fW (t) =

∞∑

j=0

(1 − ρ)ρ j
µ j+1t j

j!
e−µt = µ(1 − ρ)e−µ(1−ρ)t,

www.cambridge.org/9781108415323
www.cambridge.org


Cambridge University Press
978-1-108-41532-3 — Scheduling and Control of Queueing Networks
Gideon Weiss 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Queues and Their Simulations, Birth and Death Queues

where
µ j+1t j

j!
e−µt is the density of the Erlang distribution with parameters j+

1 and µ, denoted ∼Erlang( j + 1, µ). Hence, Wn is distributed exponentially

with parameter µ(1 − ρ) = µ − λ. Here we assume that the number of

customers in the system at the time of an arrival is distributed as the

stationary distribution of Q(t). We justify this assumption, by proving that

Poisson arrivals see time averages (PASTA) in Section 2.6. �

Remark (Resource pooling) There is an important lesson to be learned

here: We note that the queue length, described by (1.7), depends only on

ρ = λ/µ, and does not depend directly on λ or µ. If we speed up the server,

and speed up the arrival rate, say by a factor s, the number of customers

in the system will remain the same. However, the expected sojourn time

will decrease by a factor of s: 1
sµ−sλ

. In other words, suppose we had s

single-server M/M/1 queues to process s streams of customers, and were

able to use instead an s time faster service rate and pool them all into one

queue. In that case we would see the same length of queue at the pooled

single queue as we saw in each of the s queues, but customers would move

at a speed increased by a factor of s. This is the phenomena of resource

pooling. We will encounter it later throughout the text.

Example 1.4 (The M/M/∞ queue) Arrivals are Poisson at rate λ, service

time is exponential with rate µ, and there is an unlimited number of servers,

so that customers enter service immediately on arrival and there is no

waiting. The queue length process Q(t) is now the number of customers in

service, which is also the number of busy servers. Figure 1.5 illustrates the

states and transition rates of Q(t).

⋯ ⋯0 1 2

2

3 n

n

n-1

(n+1)3 µµµµµ

λ λ λ λ λ

Figure 1.5 The M/M/∞ queue, states and transition rates.

The M/M/∞ queue is always stable, and the stationary distribution of the

queue length is, by (1.6), Poisson with parameter ρ, with mean and variance

ρ:

Stationary distribution of the M/M/∞ queue:

π(n) =
ρn

n!
e−ρ, n = 0, 1, 2, . . . .

(1.8)
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