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372 Moonshine: The first quarter century and beyond, J. LEPOWSKY, J. MCKAY & M.P. TUITE (eds)
373 Smoothness, regularity and complete intersection, J. MAJADAS & A. G. RODICIO
374 Geometric analysis of hyperbolic differential equations: An introduction, S. ALINHAC
375 Triangulated categories, T. HOLM, P. JØRGENSEN & R. ROUQUIER (eds)

376 Permutation patterns, S. LINTON, N. RUŠKUC & V. VATTER (eds)
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431 Harmonic and subharmonic function theory on the real hyperbolic ball, M. STOLL
432 Topics in graph automorphisms and reconstruction (2nd Edition), J. LAURI & R. SCAPELLATO
433 Regular and irregular holonomic D-modules, M. KASHIWARA & P. SCHAPIRA
434 Analytic semigroups and semilinear initial boundary value problems (2nd Edition), K. TAIRA
435 Graded rings and graded Grothendieck groups, R. HAZRAT
436 Groups, graphs and random walks, T. CECCHERINI-SILBERSTEIN, M. SALVATORI & E. SAVA-HUSS (eds)
437 Dynamics and analytic number theory, D. BADZIAHIN, A. GORODNIK & N. PEYERIMHOFF (eds)
438 Random walks and heat kernels on graphs, M.T. BARLOW
439 Evolution equations, K. AMMARI & S. GERBI (eds)
440 Surveys in combinatorics 2017, A. CLAESSON et al (eds)
441 Polynomials and the mod 2 Steenrod algebra I, G. WALKER & R.M.W. WOOD
442 Polynomials and the mod 2 Steenrod algebra II, G. WALKER & R.M.W. WOOD

443 Asymptotic analysis in general relativity, T. DAUDÉ, D. HÄFNER & J.-P. NICOLAS (eds)
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Preface

This book is about the mod 2 Steenrod algebra A2 and its action on the

polynomial algebra P(n) = F2[x1, . . . ,xn] in n variables, where F2 is the field

of two elements. Polynomials are graded by degree, so that Pd(n) is the set of

homogeneous polynomials of degree d. Although our subject has its origin

in the work of Norman E. Steenrod in algebraic topology, we have taken

an algebraic point of view. We have tried as far as possible to provide a

self-contained treatment based on linear algebra and representations of finite

matrix groups. In other words, the reader does not require knowledge of

algebraic topology, although the subject has been developed by topologists

and is motivated by problems in topology.

There are many bonuses for working with the prime p = 2. There are no

coefficients to worry about, so that every polynomial can be written simply as

a sum of monomials. We use a matrix-like array of 0s and 1s, which we call

a ‘block’, to represent a monomial in P(n), where the rows of the block are

formed by the reverse binary expansions of its exponents. Thus a polynomial

is a set of blocks, and the sum of two polynomials is the symmetric difference

of the corresponding sets. Using block notation, the action of A2 on P(n) can

be encoded in computer algebra programs using standard routines on sets, lists

and arrays. In addition, much of the literature on the Steenrod algebra and its

applications in topology concentrates on the case p = 2. Often a result for p = 2

has later been extended to all primes, but there are some results where no odd

prime analogue is known.

We begin in Chapter 1 with the algebra map Sq : P(n) → P(n) defined on

the generators by Sq(xi) = xi + x2
i . The map Sq is the total Steenrod squaring

operation, and the Steenrod squares Sqk : Pd(n) → Pd+k(n) are its graded

parts. The linear operations Sqk can be calculated using induction on degree

and the Cartan formula Sqk(fg) =
∑

i+j=k Sqi(f )Sqj(g), which is equivalent to

xv
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xvi Preface

the multiplicative property of Sq. A general Steenrod operation is a sum of

compositions of Steenrod squares.

The multiplicative monoid M(n) of n×n matrices over F2 acts on the right of

P(n) by linear substitution of the variables. Thus Pd(n) gives a representation

over F2 of M(n) and of GL(n), the general linear group of invertible matrices.

This matrix action commutes with the action of the Steenrod squares, and

the interplay between the two gives rise to a host of interesting algebraic

problems.

One of these, the ‘hit’ problem, is a constant theme here. A polynomial f is

‘hit’ if there are polynomials fk such that f =
∑

k>0 Sqk(fk). The hit polynomials

form a graded subspace H(n) of P(n), and the basic problem is to find the

dimension of the quotient space Qd(n) =Pd(n)/Hd(n). We call Q(n) the space

of ‘cohits’. Since P(n) is spanned by monomials, Q(n) is spanned by their

equivalence classes, which we refer to simply as ‘monomials in Q(n)’. A

monomial whose exponents are integers of the form 2j − 1 is called a ‘spike’,

and cannot appear as a term in a hit polynomial. It follows that a monomial

basis for Q(n) must include all the spikes.

At a deeper level, the hit problem concerns the structure of Q(n) as a

representation of GL(n) or M(n). We develop the tools needed to answer

this in the 1- and 2-variable cases in Chapter 1. These include the 2-variable

version of the maps introduced by Masaki Kameko to solve the 3-variable

case, and a map which we call the duplication map. We hope that this opening

chapter is accessible to graduate students and mathematicians with little or no

background in algebraic topology, and that it will serve as an appetizer for the

rest of the book.

Chapter 2 introduces a second family of Steenrod operations, the conjugate

Steenrod squares Xqk : Pd(n) → Pd+k(n). These are useful in the hit problem

because of a device known as the ‘χ -trick’. This states that the product of f

and Xqk(g) is hit if and only if the product of Xqk(f ) and g is hit. We use

the χ -trick to prove that Qd(n) = 0 if and only if μ(d) > n, where μ(d) is the

smallest number of integers of the form 2j −1 (with repetitions allowed) whose

sum is d. This establishes the 1986 conjecture of Franklin P. Peterson which

first stimulated interest in the hit problem.

Here is a rough guide to the structure of the rest of the book, in terms of three

main themes: the Steenrod algebra A2, the Peterson hit problem, and matrix

representations. Volume 1 contains Chapters 1 to 15, and Volume 2 contains

Chapters 16 to 30.

Chapters 3 to 5 develop A2 from an algebraic viewpoint.

Chapters 6 to 10 provide general results on the hit problem, together with a

detailed solution for the 3-variable case.
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Chapters 11 to 14 introduce the Hopf algebra structure of A2 and study its

structure in greater depth.

Chapter 15 introduces the theme of modular representations by relating the

hit problem to invariants and the Dickson algebra.

Chapters 16 to 20 develop the representation theory of GL(n,F2) via its

action on ‘flags’, or increasing sequences of subspaces, in an n-dimensional

vector space V(n) over F2.

Chapter 21 explores a fundamental relation between linear maps V(m) →

V(n) and Steenrod operations, leading to a maximal splitting of P(n) as a direct

sum of A2-modules.

Chapter 22 studies the A2-summands of P(n) corresponding to the Steinberg

representation of GL(n,F2).

Chapters 23 and 24 develop the relation between flag modules and the dual

hit problem.

Chapters 25 and 26 study the hit problem for symmetric polynomials

over F2.

Chapters 27 and 28 study the splitting of P(n) as an A2-module obtained

using a cyclic subgroup of order 2n − 1 in GL(n,F2).

Chapters 29 and 30 return to Peterson’s original problem, with a partial

solution of the 4-variable case.

The contents of Chapters 3 to 30 are summarized below in more detail.

In Chapter 3 we interpret the operations Sqk as generators of a graded

algebra A2, subject to a set of relations called the Adem relations. The algebra

A2 is the mod 2 Steenrod algebra, and the operations Sqk of Chapter 1 provide

P(n) with the structure of a left A2-module. If f =
∑

k>0 Sqk(fk), then f can

be reduced to a set of polynomials of lower degree modulo the action of

the positively graded part A+
2 of A2. A monomial basis for Q(n) gives a

minimal generating set for P(n) as an A2-module. Thus the hit problem is

an example of the general question of finding a minimal generating set for

a module over a ring. The structure of A2 itself is completely determined by

its action on polynomials, in the sense that two expressions in the generators

Sqk are equal in A2 if and only if the corresponding operations on P(n)

are equal for all n. For example, the results Sq1Sq2k(f ) = Sq2k+1(f ) and

Sq1Sq2k+1(f ) = 0 of Chapter 1 imply the Adem relations Sq1Sq2k = Sq2k+1

and Sq1Sq2k+1 = 0.

In Chapter 3 we also establish the two most important bases for A2 as a

vector space over F2. These are the admissible monomials in the generators

Sqk, due to Henri Cartan and Jean-Pierre Serre, and the basis introduced

by John W. Milnor by treating A2 as a Hopf algebra. As mentioned above,
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we represent a monomial by a ‘block’ whose rows are the reversed binary

expansions of its exponents, and whose entries are integers 0 or 1. We

use blocks to keep track of Steenrod operations on monomials. This ‘block

technology’ and ‘digital engineering’ works well for the prime 2, and greatly

facilitates our understanding of techniques which can appear opaque when

expressed in more standard notation.

Chapter 4 begins with the multiplication formula for elements of the Milnor

basis. This combinatorial formula helps to explain the ubiquity of the Milnor

basis in the literature, as a product formula is not available for other bases

of A2. We also discuss the compact formulation of the Adem relations due

to Shaun R. Bullett and Ian G. Macdonald. We use this to construct the

conjugation χ of A2, which interchanges Sqk and Xqk.

Chapter 5 provides combinatorial background for the algebra A2, the

hit problem and the representation theory of GL(n) over F2. Sequences of

non-negative integers appear in various forms, and we distinguish ‘finite

sequences’ from ‘sequences’. A ‘finite sequence’ has a fixed number of entries,

called its ‘size’, while a ‘sequence’ is an infinite sequence R = (r1,r2, . . .) with

only a finite number of nonzero terms, whose ‘length’ is the largest ℓ for

which rℓ > 0. However, a sequence R is usually written as a finite sequence

(r1, . . . ,rn), where n ≥ ℓ, by suppressing some or all of the trailing 0s. The

modulus of a sequence or a finite sequence is the sum of its terms. For example,

the degree of a monomial is the modulus of its sequence of exponents. The set

of all sequences indexes the Milnor basis of A2.

For brevity, we call a sequence R ‘decreasing’ if ri ≥ ri+1 for all i, i.e.

if it is non-increasing or weakly decreasing. Thus a decreasing sequence of

modulus d is a partition of d. Such a partition can alternatively be regarded

as a multiset of positive integers with sum d. We discuss two special types

of partition; ‘binary’ partitions, whose parts are integers of the form 2j, and

‘spike’ partitions, whose parts are integers of the form 2j − 1.

We introduce two total order relations on sequences, the left (lexicographic)

order and the right (reversed lexicographic) order, and two partial order rela-

tions, dominance and 2-dominance. The ω-sequence ω(f ) = (ω1,ω2, . . . ,ωk)

of a monomial f is defined by writing f as a product f1f 2
2 · · · f 2k−1

k , where fi is

a product of ωi distinct variables. In terms of blocks, ω(f ) is the sequence of

column sums of the block representing f , and the degree of f is ω1 + 2ω2 +

4ω3 + ·· · + 2k−1ωk, the ‘2-degree’ of ω(f ). The set of decreasing sequences

of 2-degree d has a minimum element ωmin(d), which plays an important part

in the hit problem, and is the same for the left, right and 2-dominance orders.

We end Chapter 5 by relating this combinatorial material to the admissible and

Milnor bases of A2.
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In Chapter 6 we return to the hit problem and introduce ‘local’ cohit spaces

Qω(n). A total order relation on ω-sequences of monomials gives a filtration

on Pd(n) with quotients Pω(n). For the left and right orders, this passes to

a filtration on Qd(n) with quotients Qω(n). A polynomial f in Pω(n) is ‘left

reducible’ if it is the sum of a hit polynomial and monomials with ω-sequences

< ω in the left order, and similarly for the right order. We prove the theorem of

William M. Singer that Qω(n)= 0 if ω <ωmin(d) in the left order. We introduce

the ‘splicing’ technique for manufacturing hit equations, extend the Kameko

and duplication maps of Chapter 1 to the n-variable case, and determine Qω(n)

for ‘head’ sequences ω = (n−1, . . . ,n−1) and ‘tail’ sequences ω = (1, . . . ,1).

We begin Chapter 7 by proving that dimQd(n) is bounded by a function

of n independent of d. Thus only finitely many isomorphism classes of

F2GL(n)-modules can be realized as cohit modules Qd(n). We extend splicing

techniques and show that Qω(n) = 0 if ω is greater than every decreasing

ω-sequence in the left order. A correspondence between blocks with decreas-

ing ω-sequences and Young tableaux is used to define ‘semi-standard’ blocks

(or monomials), and we show that Qω(n) is spanned by such blocks when

ω = ωmin(d).

In Chapter 8, we obtain reduction theorems for Qω(n) when the sequence

ω has a ‘head’ of length ≥ n − 1 or a ‘tail’ of length ≥ n. It follows that

dimQd(n)=
∏n

i=1(2
i −1) for degrees d =

∑n
i=1(2

ai −1), when ai −ai+1 ≥ i+1

for i < n and when ai − ai+1 ≥ n − i + 1 for i < n. We complete a solution of

the 3-variable hit problem by giving bases for Qω(3) in the remaining cases.

The techniques introduced so far are useful for obtaining upper bounds for

dimQd(n), but are less efficient for obtaining lower bounds, where we may

wish to prove that no linear combination of a certain set of monomials is

hit. Chapter 9 introduces the dual problem of finding Kd(n), the simultaneous

kernel of the linear operations Sqk : DPd(n) →DPd−k(n) dual to Sqk for k > 0.

Here DP(n) is a ‘divided power algebra’ over F2, whose elements are sums of

dual or ‘d-monomials’ v
(d1)

1 · · ·v(dn)
n . As a F2GL(n)-module, Kd(n) is the dual

of Qd(n) defined by matrix transposition, and so dimKd(n) = dimQd(n). Thus

we aim to find upper bounds for dimQd(n) by using spanning sets in Qd(n),

and lower bounds by using linearly independent elements in Kd(n).

An advantage of working in the dual situation is that K(n) is a subalgebra

of DP(n). Since the dual spikes are in K(n), they generate a subalgebra J(n)

of K(n) which is amenable to calculation. In the cases n = 1 and 2, J(n) =

K(n), and when n = 3, Kd(n)/Jd(n) has dimension 0 or 1. We explain how to

construct the dual Kω(n) of Qω(n) with respect to an order relation. We study

the duals of the Kameko and duplication maps, and solve the dual hit problem

for n ≤ 3. In Chapter 10 we extend these results by determining Kd(3) and
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Qd(3) as modules over F2GL(3). Here the flag module FL(3), given by the

permutation action of GL(3) on subspaces of the defining module V(3), plays

an important part. We describe tail and head modules in terms of the exterior

powers of V(3).

Hopf algebras are introduced in Chapter 11. A Hopf algebra A has a

‘coproduct’ A → A ⊗ A compatible with the product A ⊗ A → A, and an

‘antipode’ A → A. We show that the coproduct Sqk 	→
∑

i+j=k Sqi ⊗ Sqj and

the conjugation χ provide the mod 2 Steenrod algebra A2 with the structure

of a Hopf algebra. For a graded Hopf algebra A of finite dimension in each

degree, the graded dual A∗ is also a Hopf algebra. In this sense, the divided

power algebra DP(n) is dual to the polynomial algebra P(n). We show that the

graded dual A∗
2 of A2 is a polynomial algebra on generators ξj of degree 2j − 1

for j ≥ 1, and determine its structure maps. We conclude this chapter with

the formula of Zaiqing Li for conjugation in A2, which complements Milnor’s

product formula of Chapter 4.

Chapters 12 and 13 give more detail on the internal structure of A2. In

Chapter 12 we focus on two important families of Hopf subalgebras of A2,

namely the subalgebras of ‘Steenrod qth powers’ Aq, where q is a power of

2, and the finite subalgebras A2(n) generated by Sqk for k < 2n+1. We also

introduce some more additive bases of A2. We continue in Chapter 13 by

introducing a ‘cap product’ action of the dual algebra A∗
2 on A2, which can

be used to obtain relations in A2 by a process which we call ‘stripping’. We

use the ‘halving’ map (or Verschiebung) of A2 to explain why its action on

P(n) reproduces itself by doubling exponents of monomials SqA and squaring

polynomials. This map sends Sqk to 0 if k is odd and to Sqk/2 if k is even. Since

it is the union of the finite subalgebras A2(n), the algebra A2 is nilpotent. We

apply the stripping technique to obtain the nilpotence order of certain elements

of A2.

Chapter 14 is devoted to a proof of the 2-dominance theorem of Judith H. Sil-

verman and Dagmar M. Meyer. This deep result states that a monomial f

in Pd(n) is hit if ω(f ) is not greater than ωmin(d) in the 2-dominance order.

This strengthens the Peterson conjecture of Chapter 2 and the theorem of

Singer from Chapter 6. One consequence is the Silverman–Singer criterion,

which states that if g and h are homogeneous polynomials such that degg <

(2k −1)μ(degh), where μ is the numerical function of Chapter 2, then f = gh2k

is hit.

In Chapter 15, we consider the Dickson algebra D(n) of GL(n)-invariants

in P(n). Following Nguyen H. V. Hung and Tran Ngoc Nam, we show

that all Dickson invariants of positive degree are hit in P(n) when n ≥ 3.

There is a large class of similar problems: given a subgroup G of GL(n),
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the subalgebra of G-invariant polynomials P(n)G is an A2-module, and the

‘relative’ hit problem asks for the elements of P(n)G which are hit in P(n).

The corresponding ‘absolute’ hit problem asks for a minimal generating set

for P(n)G. We consider the absolute problem for the Weyl subgroup G =W(n)

of permutation matrices in GL(n) in Chapter 25.

In the chapters which follow, we shift attention to the representation theory

of GL(n) over F2. We begin in Chapter 16 by studying the flag module FL(n),

which is defined by the permutation action of GL(n) on the right cosets of the

Borel subgroup B(n) of lower triangular matrices. This module is isomorphic

to Qd(n) when the degree d is ‘generic’ in the sense of Chapter 8. The Bruhat

decomposition A = BWB′ of a matrix A in GL(n) is used to define certain

subspaces of FL(n) which we call ‘Schubert cells’. Here B,B′ ∈B(n) are lower

triangular matrices and W ∈W(n) is a permutation matrix. We show that FL(n)

is the direct sum of 2n−1 submodules FLI(n), where I ⊆ {1,2, . . . ,n − 1} is the

set of dimensions of the subspaces in the ‘partial’ flags given by right cosets of

parabolic subgroups of GL(n).

The main aim of Chapter 17 is to construct a full set of 2n−1 irreducible

F2GL(n)-modules L(λ). Following C. W. Curtis, L(λ) is defined as the head

of the summand FLI(n) of FL(n), where λ is the ‘column 2-regular’ partition

corresponding to I, i.e. λi −λi+1 = 1 if i ∈ I, 0 if i �∈ I. The summand of FL(n)

corresponding to complete flags is the Steinberg module St(n). We use the

Hecke algebra H0(n) of endomorphisms of FL(n) which commute with the

action of GL(n), and follow the methods of R. W. Carter and G. Lusztig.

In Chapter 18, we review the background from modular representation

theory that we use to study P(n) and DP(n) as F2GL(n)-modules. We explain

the role of idempotents in obtaining direct sum decompositions, and introduce

the Steinberg idempotent e(n) =B(n)W(n) ∈ F2GL(n), the sum of all products

BW, where B ∈ B(n) and W ∈ W(n). We study e(n) and the conjugate

idempotent e′(n)=W(n)B(n) by means of an embedding of H0(n) in the group

algebra F2GL(n) due to N. J. Kuhn. We also discuss Brauer characters and the

representation ring R2(GL(n)).

In Chapter 19 we use idempotents in F2GL(n) to split P(n) as a direct

sum of A2-submodules P(n,λ), each occurring dimL(λ) times. We discuss

the problem of determining the number of factors isomorphic to L(λ) in a

composition series for Pd(n). Following Ton That Tri, we use the Mui algebra

of B(n)-invariants in P(n) to determine the minimum degree d in which Pd(n)

has a submodule isomorphic to L(λ).

As Weyl modules and their duals are central topics of modular representa-

tion theory, it is no surprise that they appear here also. As these modules are

defined over infinite coefficient fields, we begin Chapter 20 by reviewing some
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results on modular representations of the algebraic group G(n) of nonsingular

n × n matrices over F2, the algebraic closure of F2. We then introduce the

‘restricted’ Weyl module �(λ,n) over F2 and its transpose dual ∇(λ,n), and

show that if λ is column 2-regular and if the ordering on ω-sequences is

suitably chosen, then �(λ,n) ∼= Kω(n) and ∇(λ,n) ∼= Qω(n), where ω is the

partition conjugate to λ. We use the theory of polynomial G(n)-modules to

determine the minimum degree d in which L(λ) occurs as a composition factor

of Pd(n).

Chapter 21 gives a self-contained proof of an important result of J. F. Adams,

J. Gunawardena and H. R. Miller. This states that every degree-preserving

A2-module map P(m) → P(n) is given by a sum of linear substitutions given

by the action of m × n matrices over F2. It follows that the A2-summands in

a maximal splitting of P(n) obtained using idempotents in F2M(n) rather than

F2GL(n) are indecomposable. Hence such a splitting is a maximal direct sum

decomposition of P(n) as an A2-module.

Chapter 22 is concerned with the A2-summands of P(n) corresponding

to the Steinberg representation St(n) of GL(n). We discuss the ‘internal’

model MP(n) of the A2-module P(St(n)) defined by Stephen A. Mitchell

and Stewart B. Priddy using admissible monomials of length n in A2 itself.

Although the hit problem for P(n) can be split into a corresponding problem

for P(n,λ) for each λ, the Steinberg summand is the only case where this

problem has been solved for all n, and we give minimal generating sets for

the summands given by the idempotents e(n) and e′(n) of Chapter 18.

In Chapter 23, we identify the module Jd(n) of Kd(n) generated by the dual

spikes in degrees d =
∑n

i=1(2
ai − 1), where a1 > a2 > · · · > an, in terms of the

flag module FL(n). We show that Qd(n) ∼= FL(n) in ‘generic’ degrees d, and

extend the method in Chapter 24 to obtain results of Tran Ngoc Nam on J(n)

relating cohit modules to partial flag modules. Following Nguyen Sum, we give

counterexamples for n ≥ 5 to Kameko’s conjecture that dimQd(n) ≤ dimFL(n)

for all d.

In Chapters 25 and 26 we discuss the hit problem for the action of A2

on the algebra of symmetric polynomials §(n), the invariants in P(n) of the

group W(n) of permutations of the variables. More generally, we discuss

the ‘absolute’ hit problem for any subgroup G of W(n), and show that the

Peterson conjecture, the Kameko map and Singer’s minimal spike theorem

have analogues for P(n)G. We solve the symmetric hit problem for n ≤ 3,

using the dual problem to obtain the lower bound in the case n = 3. Following

Singer, we introduce the ‘bigraded Steenrod algebra’ Ã2, which is obtained by

omitting the relation Sq0 = 1 in the definition of A2, and apply Ã2 to the dual

problem.
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In Chapters 27 and 28 we consider the cyclic subgroup C(n) of order 2n − 1

in GL(n). This is obtained by regarding P1(n) as the underlying vector space

of the Galois field F2n . The action of C(n) on P(n) is diagonalized over F2n

by a change of variables which ‘twists’ the action of A2, in the sense that

Sq1(ti) = ti−1 in the new variables, which are indexed mod n. Following

H. E. A. Campbell and P. S. Selick, we show that the polynomial algebra

P̃(n) = F2[t1, . . . , tn] splits as the direct sum of 2n − 1 A2-modules P̃(n, j)

corresponding to the 1-dimensional representations of C(n). In particular,

P̃(n,0) can be identified with the ring of C(n)-invariants of P(n). In Chapter

28, we solve the dual cyclic hit problem for n = 3 by using the twisted analogue

J̃(n) of the d-spike module J(n).

In Chapters 29 and 30, we collect some results on the hit problem in

the 4-variable case as further illustration of our methods. Nguyen Sum has

extended the method introduced by Kameko to find a monomial basis for Qd(4)

for all d. We include without proof some of the results of Sum, and also some

results which we have verified only by computer using MAPLE. Thus there

remain some challenging aspects of the hit problem even in the case n = 4.

The Steenrod algebra was originally defined for all primes p, but we have

restricted attention to the case p = 2. All the problems have analogues for odd

primes, but in general much less is known, and a number of difficulties arise

in trying to extend our techniques to the odd prime case. The 2-variable hit

problem for the action of Ap on the polynomial algebra Fp[x,y] has been solved

by Martin D. Crossley, but little appears to be known even for the 3-variable

case. In common with many authors on the Steenrod algebra, we have therefore

confined ourselves to the prime 2.

There are several good textbooks on topology which include material on

the Steenrod algebra and its applications, such as those by Brayton I. Gray

[70] and by Robert E. Mosher and Martin C. Tangora [147], in addition to

the classic Annals of Mathematics Study [196], based on lectures by Steenrod

himself, and the Cartan seminars [33]. A treatment of the Steenrod algebra

from an algebraic viewpoint, including Steenrod operations over an arbitrary

finite field, is given in Larry Smith’s book [190] on invariant theory. The book

of Harvey R. Margolis [129] treats the general theory of modules over the

Steenrod algebra. Still other approaches to the Steenrod algebra are possible.

The survey article [233] treats Steenrod operations as linear differential

operators with polynomial coefficients, and is a precursor for this book.

We sometimes introduce definitions and constructions for a small number of

variables and extend them to the general case in later chapters. Although this

can involve a certain amount of repetition, it has the advantage of leading to
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interesting results at an early stage by elementary methods. We hope that our

approach will appeal to readers whose main interests are in algebra, especially

in the modular representation theory of linear groups, or in the combinatorics

related to symmetric polynomials and to the invariant theory of finite groups.

In order to avoid interruptions to the text, citations and background material

are collected in the ‘Remarks’ sections at the end of each chapter. The

occasional reference to topology may occur in these, but we have not tried to

explain the topology. We have also omitted important topics such as the Singer

transfer map and its applications to the homotopy groups of spheres through

the Adams spectral sequence. These would require another volume, which

we are not qualified to write. For similar reasons, we do not treat the theory

of analytic functors and the category U/N il of unstable A2-modules modulo

nilpotent objects due to Hans-Werner Henn, Jean Lannes and Lionel Schwartz.

Finally, in a subject which crosses several disciplines, notation presents a

problem because the traditional symbols of one area may be in conflict with

those of another. A list of symbols for the main ingredients of our subject

appears at the end of the book, together with an index of the main terms defined

in the text.

We should like to offer our sincere thanks to the School of Mathematics of

the University of Manchester for providing us with office space and computing

facilities during work on this text. We should also like to thank several

colleagues at Manchester for mathematical help and support, and in particular

Peter Eccles, Nige Ray, Peter Rowley and Bob Sandling. Of colleagues farther

afield, we should like to thank Nguyen H. V. Hung, Ali S. Janfada, Bill Singer

and Larry Smith for their interest in our project. The first author would also

like to thank Stephen R. Doty for teaching him something about modular

representation theory. Finally we should like to thank Roger Astley and his

colleagues at Cambridge University Press for their encouragement, support

and patience. We set out with the modest aim of providing a beginning

graduate student in topology and algebra with a basic primer on the Steenrod

algebra, illustrated by our favourite application to a problem proposed by Frank

Peterson, but the project has expanded substantially in scope over the past eight

years.
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