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Relations among partitions

R. A. Bailey

Abstract

Combinatorialists often consider a balanced incomplete-block

design to consist of a set of points, a set of blocks, and an inci-

dence relation between them which satisfies certain conditions. To

a statistician, such a design is a set of experimental units with two

partitions, one into blocks and the other into treatments; it is the

relation between these two partitions which gives the design its prop-

erties. The most common binary relations between partitions that

occur in statistics are refinement, orthogonality and balance. When

there are more than two partitions, the binary relations may not

suffice to give all the properties of the system. I shall survey work

in this area, including designs such as double Youden rectangles.

1 Introduction

Many combinatorialists think of a balanced incomplete-block design
(BIBD) as a set P of points together with a collection B of subsets of
P, called blocks, which satisfy various conditions. For example, see [52].
Some papers, such as [16, 65, 201], call a BIBD simply a design. Others
think of it as the pair of sets P and B with a binary incidence relation
between their elements. These views are both rather different from that
of a statistician who is involved in designing experiments. The following
examples introduce the statistical point of view, as well as serving as a
basis for the combinatorial ideas in this paper.

Example 1.1 A horticultural enthusiast wants to compare three varieties
of lettuce for people to grow in their own gardens. He enlists twelve peo-
ple in his neighbourhood. Each of these prepares three patches in their
vegetable garden, and grows one of the lettuce varieties on each patch, so
that each gardener grows all three varieties.

Here the patches of land are experimental units. There may be some
differences between the gardeners, so the three patches in a single garden
form what is called a block . Each variety occurs just once in each block,
and so the blocks are said to be complete. Complete-block designs were
advocated by Fisher in [78], and are frequently used in practice.

Example 1.2 Now suppose that the number of lettuce varieties is in-
creased to nine. It is not reasonable to expect an amateur gardener to
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Figure 1: Balanced incomplete-block design in Example 1.2: columns rep-
resent blocks and letters represent varieties

grow nine different varieties, so each gardener still uses only three patches
of ground, and thus can grow only three varieties. The blocks are now
incomplete, in the terminology of Yates [227].

One possible layout is shown in Figure 1. This incomplete-block design
has the property that each pair of distinct varieties concur in the same
number of blocks (here, exactly one). Yates originally called incomplete-
block designs with this property symmetrical , but the adjective had been
changed to balanced within a few years [46, 80].

To a statistician, the partition of the set of experimental units into
blocks is inherent and is known before the decision is taken about which
variety to allocate to each unit. This allocation gives another partition
of the set of experimental units, and it is the relation between these two
partitions that is regarded as balance. It is not a symmetric relation,
in general. In Example 1.2 the varieties are balanced with respect to
the blocks, but the blocks are not balanced with respect to the varieties
because some pairs of blocks have one variety in common while others have
none. This relation is discussed in more detail in Section 5.

In fact, statisticians usually call these partitions factors, because the
names of the parts are relevant. In Example 1.2 the names of the varieties
are not interchangeable; we probably want to find out which one does
best. Thus a factor is typically regarded as a function from the set of
experimental units to a finite set: if B and L denote the factors for blocks
and lettuce varieties respectively and ω is a vegetable patch then B(ω)
is the block (garden) containing ω and L(ω) is the variety grown on ω.
Furthermore, |B(ω)| is the size of the block containing ω, while |L(ω)| is
the number of patches with the same variety as that grown on ω.

A response Yω, such as total yield of edible lettuce in kilograms, is
measured on each patch ω. It is usually assumed that Yω is a random
variable and that there are constants τi and βj such that

Yω = τL(ω) + βB(ω) + εω, (1.1)

where the final terms εω are independent random variables with zero mean
and the same variance σ2; often they are assumed to be normally dis-
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Figure 2: Resolved balanced incomplete-block design in Example 1.3:
columns represent blocks, rectangles represent districts and letters rep-
resent varieties

tributed. The purpose of the experiment is to estimate the constants τi.
Of course, this is impossible, because equation (1.1) is unchanged if a con-
stant is added to every τi and subtracted from every βj , but we aim to
estimate differences such as τ1 − τ2, that is, to estimate the τi up to an
additive constant.

Thus the two partitions have different roles. One (the partition B) is
inherent, and we are usually not interested in the effects βj of the different
parts. The other (the partition L) has its parts allocated by the experi-
menter, and the purpose of the experiment is to find out what differences
there are between its parts. Nonetheless, this paper will concentrate on
the combinatorial relation between them. Before doing so, we give some
examples with three partitions.

Example 1.3 Suppose that the twelve gardeners in Example 1.2 do not
all live in the same neighbourhood. Instead, they are spread over four dif-
ferent districts, with three per district. If the first three blocks in Figure 1
represent the gardens in the first district, and so on, then each variety is
grown once in each district, as shown in Figure 2. This is convenient if
other people want to look at the different varieties during the course of
the experiment.

Each block is contained within a single district, so the partition into
blocks is a refinement of the partition into districts. Section 3 discusses
refinement in more detail. On the other hand, the partitions into districts
and into varieties have the property that each part of one (a district) meets
each part of the other (a variety) in a single experimental unit. This is a
special case of strict orthogonality , which is explained in Section 4.

The assumption about Yω might remain as in (1.1) or it might be

Yω = τL(ω) + βB(ω) + γD(ω) + εω, (1.2)

where D(ω) is the district containing ω. Of course, if the βj and γk are
all constants then they are not estimable, because we can add a constant
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Figure 3: Row–column design in Example 1.4: rows represent months,
columns represent people and letters represent exercise regimes

to γ1 and subtract it from βj for all blocks j in district 1. However, it
is sometimes assumed that the βj are independent random variables with
zero mean and the same variance σ2

B . Section 6.2 discusses further the
potential difficulty in an assumption like (1.2) when one partition is a
refinement of another.

An incomplete-block design whose blocks can be grouped into collec-
tions each of which contains each variety just once, as in Example 1.3, is
called resolvable. Section 15 gives more information about such designs.

Example 1.4 In order to assess the benefits of different exercise regimes,
a health scientist asks seven healthy people to participate in an experiment
over four months. Each month each person will be allocated one of seven
exercise regimes. At the end of each month, the change in some measure
of fitness, such as heart rate, will be recorded for each person.

Now each experimental unit is one person for one month. The parti-
tions into months and into people are inherent, but the scientist chooses
the partition into exercise regimes. Figure 3 shows one possible design for
this experiment. The partitions into months and into people are strictly
orthogonal to each other, as are the partitions into months and into ex-
ercise regimes. The partitions into people and into exercise regimes are
both balanced with respect to each other.

Example 1.5 A small modification of Example 1.4 has five months, six
people and ten exercise regimes. One possible design is shown in Fig-
ure 4, where rows represent months, columns represent people and letters
represent exercise regimes.

Example 1.6 A modification of Example 1.2 has ten gardens of three
vegetable patches each, and six varieties of lettuce. In addition, there are
are five possible watering regimes. Each patch must have one variety of
lettuce and one watering regime. The design in Figure 4 can be used, but
now rows represent watering regimes, columns represent lettuce varieties
and letters represent gardens.
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Figure 4: Combinatorial design used in Examples 1.5 and 1.6

Denote by R, C and L the partitions into rows, columns and letters
in the design in Figure 4. From the point of view of the statistician, the
uses of this design in Examples 1.5 and 1.6 are quite different. In the
former, the partitions R and C are inherent while L is at the choice of the
experimenter; in the latter, L is inherent while the experimenter chooses
R and C. However, in both cases it may be assumed that

Yω = αR(ω) + φC(ω) + τL(ω) + εω. (1.3)

From a combinatorial point of view, Figure 4 simply shows a set with
three partitions. The partitions R and C are strictly orthogonal to each
other, while each of R and C is balanced with respect to letters. In fact,
there is a third property, called adjusted orthogonality , that will be defined
in Section 8.

For further explanation of how combinatorial design problems arise
from statistically designed experiments, see [22, 33, 177, 204].

The remainder of this paper treats a combinatorial design as a collec-
tion of partitions of a finite set. Section 2 establishes some notation for
partitions and their associated matrices and subspaces. Sections 3–5 dis-
cuss the three most important binary relations between partitions, all of
which have been seen in the examples so far. Section 6 explains more about
the background to equations (1.1)–(1.3). Section 7 discusses the relations
between the subspaces defined by partitions, and shows that sometimes
there is a need for a ternary relation. Sections 8 and 9 give more details of
two important non-binary relations. These are used in Section 10, which
considers possibilities for three partitions. This leads to several different
types of combinatorial design, considered in the remaining sections. Each
type is defined by three partitions, or is a simple generalization with more
partitions but no need for any further non-binary relations.

2 Partitions on a finite set

Let Ω be a finite set of size e, where e > 1. The elements of Ω will be
called experimental units, or just units. The rest of this paper deals with
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partitions of Ω.
If F is such a partition, denote by nF its number of parts. The e×nF

incidence matrix XF has (ω, i)-entry equal to 1 if unit ω is in part i of F ;
otherwise, this entry is zero. Thus XFX

⊤
F is the e× e relation matrix for

F , with (ω1, ω2)-entry equal to 1 if ω1 and ω2 are in the same part of F ,
and equal to 0 otherwise. The nF × nF matrix X⊤

F XF is diagonal, with
(i, i)-entry equal to the size of the i-th part of F .

Definition A partition is uniform if all of its parts have the same size.

Many statisticians, including Tjur [208, 209], call uniform partitions
balanced, but this conflicts with the notion of balance introduced in Sec-
tion 1. This terminology is discussed again in Section 9. Preece reviewed
the overuse of the word balance in design of experiments in [155]. The
adjectives homogeneous [44], proper [151] and regular [66] are also used.

If F is uniform, denote the size of all its parts by kF . Then nF kF = e

and X⊤
F XF = kF InF

, where In is the identity matrix of order n.
Denote by RΩ the real vector space of dimension e whose coordinates

are labelled by the elements of Ω, so that each vector may be regarded as a
function from Ω to R. If F is a partition of Ω, denote by VF the subspace
of RΩ consisting of vectors which are constant on each part of F . Then
dim(VF ) = nF .

We assume the standard inner product on RΩ. Denote by PF the
matrix of orthogonal projection onto VF . Then PF replaces the coordinate
yω of any vector y by the average value of yν for ν in F (ω), which is the

part of F containing ω. In fact, PF = XF

(

X⊤
F XF

)−1
X⊤

F . If F is uniform
then XFX

⊤
F = kFPF .

Equations (1.1)–(1.3) all have the form

Y =
∑

F∈F

XFψF + ε, (2.1)

where Y and ε are random vectors of length e, F is a set of partitions of Ω,
and, for F in F , ψF is a real vector of length nF . Thus the expectation
E(Y ) of Y is in the subspace

∑

F∈F
VF .

There are two trivial partitions on Ω, which are different when e > 1.
The parts of the equality partition E are singletons, so kE = 1, nE = e

and XE = Ie = PE . At the other extreme, the universal partition U has
a single part, so nU = 1, kU = e, XUX

⊤
U = Jee and PU = e−1Jee, where

Jnm denotes the n×m matrix with all entries equal to 1. Moreover, VE is
the whole space RΩ, while VU is the 1-dimensional subspace of constant
vectors.
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If F and G are two partitions of Ω, their nF×nG incidence matrix NFG

is defined by NFG = X⊤
F XG. The (i, j)-entry is the size of the intersection

of the i-th part of F with the j-th part of G. In particular, NEF = XF .

Given a set F of partitions of Ω, denote by AF the algebra of e×e real
matrices generated by the projection matrices PF for F in F , and denote
by JF the algebra generated by the relation matrices XFX

⊤
F for F in F .

These are the same if all partitions in F are uniform. James called JF the
relationship algebra of F in [99], but it was shown in [100, 115] that AF is
more useful for understanding the properties of F relevant to a designed
experiment.

3 Refinement

Definition If F and G are partitions of Ω, then F is finer than G (equiv-
alently, G is coarser than F ) if every part of F is contained in a single
part of G but at least one part of G is not a part of F . This relation is
denoted F ≺ G or G ≻ F .

In Example 1.3, B ≺ D. If F ≺ G then nF > nG and VG < VF .

Write F � G (or G � F ) to mean that either F ≺ G or F = G. Then
� is a partial order. For every partition F , it is true that E � F � U and
VU ≤ VF ≤ VE .

Proposition 3.1 Let F and G be partitions of Ω. If F � G then PFPG =
PGPF = PG.

As with any partial order, there is a choice about which of the two
objects should be considered ‘smaller’. Some statisticians write the refine-
ment partial order in the opposite way to that used here. For example,
see [31, 208, 209].

Since there are only a finite number of partitions of Ω, there is no
difficulty with the next definition.

Definition Let F and G be partitions of Ω. The infimum F ∧ G of
F and G is the coarsest partition H satisfying H � F and H � G; its
parts are the non-empty intersections of a part of F and a part of G.
Thus F ∧ G = E if and only if no part of F intersects any part of G

in more than one unit. The supremum F ∨ G of F and G is the finest
partition K satisfying F � K and G � K; its parts are the connected
components of the graph with vertex-set Ω and an edge between ω1 and
ω2 if F (ω1) = F (ω2) or G(ω1) = G(ω2).
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Thus if F � G then F ∧ G = F and F ∨ G = G. In the design in
Figure 4, R ∧ C = R ∧ L = C ∧ L = E and R ∨ C = R ∨ L = C ∨ L = U .

Proposition 3.2 If F and G are partitions of Ω then VF ∩ VG = VF∨G.

4 Orthogonality

4.1 Definitions

As Preece noted in [154], the word orthogonal has many different mean-
ings in the statistical literature. Here I use the terminology in [23, 25, 32,
208].

Proposition 3.2 shows that subspaces VF and VG can never be orthog-
onal to each other. This motivates the following definition, from [208].

Definition Let V and W be subspaces of RΩ. Then V and W are
geometrically orthogonal to each other if the subspaces V ∩ (V ∩W )⊥ and
W ∩ (V ∩W )⊥ are orthogonal to each other.

Proposition 4.1 Let F and G be partitions of Ω. The following state-
ments are equivalent:

(i) VF is geometrically orthogonal to VG;

(ii) PFPG = PGPF ;

(iii) PFPG = PF∨G;

(iv) for every unit ω, we have |F (ω)| |G(ω)| = |(F ∧G)(ω)| |(F ∨G)(ω)| .

The second statement above is sometimes called ‘projectors commute’, and
the fourth ‘proportional meeting within each class of the supremum’.

Definition Let F and G be partitions of Ω. Then F is orthogonal to
G, written F ⊥ G, if PFPG = PGPF ; and F is strictly orthogonal to G,
written F⊥G, if PFPG = PGPF = PU .

Duquenne calls these two concepts local orthogonality and orthogonality
respectively in [66]; the latter agrees with Gilliland’s definition of orthog-
onality in [83]. Some authors split the definitions further according to
whether or not F ∧G is uniform.

Proposition 3.1 shows that if F � G then F ⊥ G. In particular,
all partitions are orthogonal to both E and U , and every partition is
orthogonal to itself.
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Figure 5: A 2 × 3 row–column design with nine units and three letters,
giving mutually orthogonal partitions into rows, columns and letters

Figure 6: Two blocks, each of which is a 3× 4 rectangle, so that there are
6 rows and 8 columns

In the design in Figure 4, R⊥C. If R, C and L denote the partitions
into rows, columns and letters in Figure 5, then R⊥C, R⊥L and C⊥L even
though R, R ∧ C and R ∧ L are not uniform, because the ‘proportional
meeting’ condition in Proposition 4.1(iv) is satisfied for all pairs and all
pairwise suprema are equal to U . If B, R and C denote the partitions into
blocks, rows and columns in Figure 6, then R ⊥ C but R is not strictly
orthogonal to C because R ∨ C = B 	= U .

Proposition 4.2 Let F and G be partitions of Ω. Then F⊥G if and only
if NFG = e−1(X⊤

F XF )JnFnG
(X⊤

GXG).

4.2 Orthogonal arrays

Definition An orthogonal array of strength two on Ω is a collection
F of at least two uniform partitions of Ω with the property that every
pair of distinct partitions is strictly orthogonal. Inductively, for m ≥ 3,
a collection F of at least m partitions of Ω is an orthogonal array of
strength m if it is an orthogonal array of strength m − 1 and, whenever
F1, . . . , Fm are distinct partitions in F , the infimum F1 ∧F2 ∧ · · · ∧Fm−1

is strictly orthogonal to Fm.

Figure 7 shows an orthogonal array of strength two with e = 12, |F| =
11, and nF = 2 for all F in F . It is equivalent to that given by Plackett
and Burman [142]. Replacing each 0 by −1 and adjoining a row of 1s
gives a Hadamard matrix of order 12. The paper [142] inspired Rao to
define orthogonal arrays and begin to develop a general theory of them in
[181, 182].
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F1 0 0 1 0 0 0 1 1 1 0 1 1
F2 1 0 0 1 0 0 0 1 1 1 0 1
F3 0 1 0 0 1 0 0 0 1 1 1 1
F4 1 0 1 0 0 1 0 0 0 1 1 1
F5 1 1 0 1 0 0 1 0 0 0 1 1
F6 1 1 1 0 1 0 0 1 0 0 0 1
F7 0 1 1 1 0 1 0 0 1 0 0 1
F8 0 0 1 1 1 0 1 0 0 1 0 1
F9 0 0 0 1 1 1 0 1 0 0 1 1
F10 1 0 0 0 1 1 1 0 1 0 0 1
F11 0 1 0 0 0 1 1 1 0 1 0 1

Figure 7: Orthogonal array of strength two, consisting of 11 partitions of
a set of size 12 into two parts: columns represent elements of the set, and
each row shows one partition

For n ≥ 2, the rows, columns and letters of any Latin square of order n
give an orthogonal array of strength two on a set of size n2, with three
partitions into parts of size n. See [95] for many uses and constructions of
orthogonal arrays, as well as more theory. Eendebak and Schoen maintain
a catalogue on the web page [76].

From Finney [77] onwards, finite Abelian groups have been a fruitful
source of orthogonal arrays, under the name fractional factorial designs.
For i = 1, . . . , s let Gi be an Abelian group of order ni, where ni ≥ 2.
Let G be the product group G1 × G2 × · · · × Gs. Every complex irre-
ducible character χ of G has the form χ = (χ1, χ2, . . . , χs) where χi is an
irreducible character of Gi and χ(g1, g2, . . . , gs) = χ1(g1)χ2(g2) · · ·χs(gs).
Let H be a subgroup of G, and let Fi be the partition of H defined by the
values of the i-th coordinate. Then {F1, . . . , Fs} forms an orthogonal array
of strength m on H if and only if the only non-trivial characters χ of G
whose restriction to H is trivial have non-trivial components χi for at least
m + 1 values of i. For example, if s = 3, n1 = n2 = n3 = 7 and Gi is Z7

written additively for i = 1, 2 and 3 then {F1, F2, F3} forms an orthogonal
array of strength two on the subgroup H = {(g1, g2, g3) : g1+g2+g3 = 0}.
Up to isotopism (permutations of the names of the parts of each partition),
this is the Latin square obtained as the Cayley table of Z7.

Some papers, such as [61, 112, 141, 215], call an orthogonal array reg-
ular if and only if it is made from an Abelian group in this way. There
are two problems with this. The first is that, in each experiment, the
parts of Fi (such as varieties of lettuce) are unlikely to be labelled by the
elements of a finite Abelian group. How is the statistician analysing the
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