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On the role of totally disconnected groups in the

structure of locally compact groups

Marc Burger

Abstract

We describe to what extent a general locally compact group decomposes into a

totally disconnected part and a connected part that can be approximated by Lie

groups. We also present a construction that highlights the relevance of groups

acting on trees in the structure of general locally compact groups.
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In the first part of this lecture we establish a fundamental theorem which

says that if G is a totally disconnected locally compact group, every neigh-

bourhood of e ∈ G contains a compact open subgroup. Since such groups are

profinite, this implies that the multiplication in a neighbourhood of e can be

approximated with arbitrary accuracy by the multiplication in finite groups.

In the second part of the lecture we address the question to which extent

a locally compact group decomposes into a totally disconnected part and a

connected part; using the concept of amenable radical we will establish a de-

composition result using the Gleason–Yamabe structure theorem.

In the third part we describe a construction which relates totally discon-

nected groups which are compactly generated to groups acting on trees via an

appropriate Cayley–Abels graph (“Nebengruppenbild”, see [3], §4).

Parts 2 and 3 of this lecture are taken from [1], 3.3–3.5, with some modifica-

tions. The heuristic principle is that certain questions, concerning for instance
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amenable actions of general compactly generated locally compact groups, can

be analyzed by treating separately the case of semisimple Lie groups and

closed cocompact subgroups of the automorphism group of a regular tree. For

van Dantzig’s theorem, one may consult [2], Chapter II, §7, and a good refer-

ence for Hilbert’s 5th problem is [4].

1.1 Van Dantzig’s theorem

Let us first fix some terminology: a topological space X is locally compact if

every point admits a compact neighbourhood; if in addition X is T2 (that is

Hausdorff), then every point admits a fundamental system of compact neigh-

bourhoods.

Let now G be a topological group; then the connected component G◦ of

e ∈ G is a normal subgroup and closed in addition; thus G/G◦ with quotient

topology is a T2 topological group and:

Lemma 1.1 The topological group G/G◦ is totally disconnected.

Recall

Definition 1.2 A non-empty topological space is totally disconnected if all

its connected components are reduced to points.

Observe then that a topological group L is totally disconnected if and only

if L◦ = (e).

Proof Let π : G → L := G/G◦ be the canonical quotient homomorphism and

assume that π−1(L◦) = F1 ∪F2 where Fi ⊂ G are closed disjoint subsets. Since

G◦ ⊂ π−1(L◦), we have for every g ∈ π−1(L◦) either gG◦ ⊂ F1 or gG◦ ⊂ F2.

Thus, F1 and F2 are union of G◦-cosets and the decomposition descends to the

quotient. Since L◦ is connected, we conclude that F1 = ∅ or F2 = ∅. Hence

π−1(L◦)⊃G◦ is connected and hence π−1(L◦) = G◦ which finally implies that

L◦ = (e) and L = G/G◦ is totally disconnected.

Corollary 1.3 If G is locally compact T2, then G/G◦ is locally compact, T2

and totally disconnected.

Our aim is to establish the following result of D. van Dantzig [5].

Theorem 1.4 If G is locally compact, T2 and totally disconnected, then every

compact neighbourhood of e contains a closed and open subgroup.
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In the sequel we will call “clopen” the subsets which are closed and open.

The following lemma is the essential ingredient:

Lemma 1.5 Let X be a compact T2 space. Then for every x ∈ X, the subset

Kx :=
⋂

{U : U ∋ x, U is clopen}

is connected.

Proof Assume that Kx = K1 ∪K2 is a disjoint union of closed subsets with

K1 ∋ x; pick open subsets Ui ⊃ Ki with U1∩U2 =∅ and consider F :=U2\U2.

Since K2 ⊂U2, we have F ∩K2 =∅ and since F ⊂U2 ⊂Uc
1 we have F ∩K1 =

∅. Thus, F ∩Kx =∅ and by compactness of X , there are finitely many clopen

subsets Ui ∋ x, 1 ≤ i ≤ n, with

n⋂

i=1

Ui ∩F =∅.

Setting V :=
⋂n

i=1 Ui, we deduce from V ∩ (U2\U2) =∅ that V ∩Uc
2 =V ∩U

c
2

which shows that V ∩Uc
2 is a clopen set containing x and avoiding K2. Thus,

K2 =∅ and Kx is connected.

With this at hand we obtain the following important information concerning

the topology of totally disconnected spaces:

Lemma 1.6 Let X be locally compact, T2 and totally disconnected. The fam-

ily of compact open subsets is a basis for the topology of X.

Proof Let x ∈ X and C ∋ x a compact neighbourhood of x. Since X is totally

disconnected T2, Lemma 1.5 implies

{x}=
⋂ {

U : U ⊂C, U clopen in C, U ∋ x
}
.

If
◦
C denotes the interior of C, we have (C\

◦
C)∩ {x} = ∅, hence there are

U1, . . . ,Un clopen in C with x ∈
⋂n

i=1 Ui and (
⋂n

i=1 Ui)∩ (C\
◦
C) = ∅. Thus,⋂n

i=1 Ui is open in X ; since at any rate it is compact, this finishes the proof of

the lemma.

Lemma 1.7 Let G be a topological group and C ⊂U with C compact and U

open. Then there is V ∋ e open, with V =V−1 and C ·V ⊂U.

Proof By continuity of the multiplication and the inverse, there is for every

x ∈C and open Vx ∋ e with Vx =V−1
x and xV 2

x ⊂U . In particular, C ⊂
⋃

x∈C xVx
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and hence there exist x1, . . . ,xn in C with C ⊂
⋂n

i=1 xi Vxi
. Now set V :=

⋂n
i=1 Vxi

;

then V =V−1 ∋ e is open and

C ·V ⊂
n⋃

i=1

xi Vxi
V ⊂

n⋃

i=1

xi V
2
xi
⊂U.

Proof of Theorem 1.4. Let U ∋ e be a neighbourhood of e. By Lemma 1.6 there

exists C ⊂ G compact open subset with e ∈C ⊂U . By Lemma 1.7, since C is

both compact and open, there exists V ∋ e, V = V−1 open with CV ⊂ C and

hence CV =C. Thus, the subgroup

L := {g ∈ G : C ·g =C}

contains V ∋ e and hence is open in G; since C ∋ e, we have L ⊂C, and since

L is closed it is therefore compact. �

Thus, it follows from Theorem 1.4 that for such locally compact totally dis-

connected groups, the local multiplicative structure is completely encoded in

compact groups. Now one can go one step further and apply Theorem 1.4 to

compact groups:

Corollary 1.8 A compact, T2 totally disconnected group is a projective limit

of finite groups.

Proof By Theorem 1.4, the set V of all compact open subgroups of G form

a fundamental system of neighbourhoods of e. Since G is compact, for every

H ∈O , G/H is finite and thus
⋂

x∈G xHx−1 is still open and normal in G. Thus,

V = {H ∈ O: H ✁G} also form a fundamental system of neighbourhoods of

e. For every H, the group G/H is finite and we deduce from the above that the

continuous homomorphism

G −→ ∏
H∈V

G/H

g �−→ (gmodH)

is injective, and hence provides a topological isomorphism from G to a closed

subgroup of the above product of finite groups.

1.2 An application of the Gleason–Yamabe theorem

An interesting application of Theorem 1.4 is the following: let G be locally

compact totally disconnected; then any continuous homomorphism π: G →
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GL(n,R) has open kernel. Indeed, let U ∋ Id be an open neighbourhood of

Id in GL(n,R) which does not contain any non-trivial subgroup; then π−1(U)

is an open neighbourhood of e and hence contains a compact open subgroup

L. But then π(L) ⊂ U must be the trivial group. Thus, one of the possible

obstructions to be a Lie group is to be non-discrete, totally disconnected.

For connected groups, examples which are not Lie groups include (S1)N or

∏n≥1 U(n). The latter example is somehow universal, in that every separable

compact T2 group is isomorphic to a closed subgroup thereof; this is an easy

consequence of the Peter–Weyl theorem and had already been observed by von

Neumann.

One of the major structure theorems for locally compact groups is the fol-

lowing

Theorem 1.9 (Gleason–Yamabe) Let G be locally compact T2. Then there is

an open subgroup G′ which is a projective limit of Lie groups.

When G is connected we have automatically that G = G′ and we obtain

Corollary 1.10 Let G be locally compact, T2, connected. Then there is a

normal compact subgroup K ✁G such that the quotient G/K is a Lie group.

Our aim is to obtain a variant of Corollary 1.10 where one divides by a char-

acteristic subgroup. This will involve the concept of amenable radical. Recall

first

Definition 1.11 A topological group G is amenable if it fixes a point in every

non-empty convex-compact G-space.

Here a convex-compact G-space is a convex compact subset S of a T2 locally

convex topological vector space on which G acts continuously, linearly, and

preserving S.

Now we sketch the proof of the existence of the amenable radical:

Theorem 1.12 Let G be locally compact T2. Then there exists a unique max-

imal closed amenable normal subgroup A(G) of G. It is topologically charac-

teristic and

A
(
G/A(G)

)
= (e).

Proof Let N be the set of all closed normal amenable subgroups of G and let

A(G) = 〈N: N ∈ N 〉 be the closed subgroup generated by them. Clearly, A(G)

is topologically characteristic and we proceed to show that it is amenable. Let

S be a convex-compact A(G)-space, and let {N1, . . . ,Nr} ⊂ N be any finite
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collection. Observe that N1 . . .Nr−1 is a normal subgroup of G, in particular

normalised by Nr; thus, Nr acts in the set SN1...Nr−1 of N1 . . .Nr−1-fixed points

in S and

(SN1,...,Nr−1)Nr =
r⋂

i=1

SNi .

Take first r = 2: since N1 is amenable, SN1 �=∅; since now SN1 is a non-empty

convex-compact N2-space, we have (SN1)N2 �=∅, and hence SN1 ∩SN2 �=∅. Us-

ing the amenability of every Ni, one shows by induction that (SN1,...,Nr−1)Nr �=

∅, and hence
⋂r

i=1 SNi �=∅. Thus, since S is compact, we conclude

⋂

N∈N

SN �=∅,

and hence by continuity, SA(G) �=∅. This shows that A(G) is amenable. Finally,

the fact that A(G/A(G)) = e is an easy exercise.

We can now draw the following easy consequence from the existence of the

amenable radical and Corollary 1.10.

Corollary 1.13 Assume that G is locally compact, T2 and connected. Then

the quotient

G/A(G)≃
n

∏
i=1

Si

is isomorphic to a direct product of connected, simple, centre-free, non-compact

Lie groups.

Proof By Corollary 1.10 there exists K ✁G compact such that G/K is a Lie

group. Since K is compact, in particular amenable, and normal in G, we must

have that A(G)⊃ K. Thus, L := G/A(G) is a Lie group as well and in addition

A(L) = (e). Thus, L has trivial solvable radical as well as trivial centre; thus it

is a direct product of simple adjoint Lie groups none of which can be compact.

We turn now to our main application of the results so far obtained. Let G

be locally compact T2 and G◦ as above its connected component of e; then

the amenable radical A(G◦) is a characteristic subgroup of G◦ and hence it is

normal in G; let

L := G/A(G◦)

denote the quotient group.
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Theorem 1.14 The group L◦ is a direct product of adjoint connected simple

non-compact Lie groups. Its centraliser ZL(L
◦) in L is totally disconnected and

the direct product L◦ ·ZL(L
◦) is open and of finite index in L.

In particular, G/A(G◦) is virtually the direct product of its connected com-

ponent of e with a totally disconnected normal subgroup. Observe that this

totally disconnected group, that is ZL(L
◦), is locally isomorphic to G/G◦, so

that one can at least “lift” G/G◦ locally to G/A(G◦).

Proof of Theorem 1.14. Observe (exercise!) that L◦ = G◦/A(G◦); thus A(L◦) =

(e) and the first assertion of the theorem follows from Corollary 1.13. For

every g ∈ L, let i(g): L → L denote the automorphism given by conjugation

ℓ �−→ gℓg−1. By restriction to L◦, we obtain a continuous homomorphism

L → Aut(L◦), g �−→ i(g)|L◦ . It follows then from the fact that L◦ is connected

semisimple with finite centre, that the group Inn(L◦) of inner automorphisms

of L◦ is open of finite index in Aut(L◦). As a result, the subgroup

L∗ :=
{

g ∈ L : i(g)
∣∣
L◦

∈ Inn(L◦)
}

is open and finite index in L as well. Thus, for every g ∈ L∗ there exists an

h ∈ L◦ such that gℓg−1 = hℓh−1 for every ℓ ∈ L◦, that is h−1g ∈ ZL(L
◦), which

shows that L∗ = L◦ ·ZL(L
◦). Observe that this product is direct since ZL(L

◦)∩

L◦ ⊂ Z(L◦) = (e). Finally, the subgroup ZL(L
◦) is totally disconnected since it

is isomorphic to the open subgroup L∗/L◦ of L/L◦. �

1.3 Totally disconnected groups and actions on trees

If G is a compactly generated locally compact group, then so is G/A(G◦) and

hence the totally disconnected group H := ZL(L
◦) is compactly generated as

well. Such groups are naturally related to groups acting cofinitely on trees in

the following way.

Let H be totally disconnected generated by a compact set C and let U < H

be a compact open subgroup. Let G = (V,E) be the undirected simple graph

with vertex set V := G/U and edge set

E = {(gU,gcU) : g ∈ H, c ∈UCU}.

Then G is regular of finite valency d := |UCU/U | and H acts as a group of

automorphisms on G ; the kernel of this action is K :=
⋂

g∈H gUg−1 and hence

compact. We call G a Cayley–Abels graph.
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Let H1 := H/K and Td → G the universal covering of G . Then we obtain

an exact sequence

(e)→ π1(G )→ Ĥ → H1 → (e),

where H̃ < AutTd is the group of all automorphisms of the d-regular tree

which cover elements from H1.

Observe that H̃ is a closed subgroup of AutTd acting transitively on the

set of vertices of Td , in particular is compactly generated. When H1 is non-

compact and G is not a tree, π1(G ) is a free group on countably many genera-

tors. In particular, if H̃r := H̃/[π1, [π1, . . . ]] denotes the quotient by the rth-term

of the derived series of π1, the amenable radical of the compactly generated

group H̃r contains the free solvable group of rank r on countably many gener-

ators.
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