CAMBRIDGE

Cambridge University Press
978-1-108-41285-8 - Cambridge IGCSE \circledR ® and O Level Additional Mathematics Practice Book
Muriel James
Excerpt
More Information

Chapter 1: Functions

This section will show you how to:

- understand and use the terms: function, domain, range (image set), one-one function, inverse function and composition of functions
- use the notation $\mathrm{f}(x)=2 x^{3}+5, \mathrm{f}: x \mapsto 5 x-3, \mathrm{f}^{-1}(x)$ and $\mathrm{f}^{2}(x)$
- understand the relationship between $y=\mathrm{f}(x)$ and $y=|\mathrm{f}(x)|$
- solve graphically or algebraically equations of the type $|a x+b|=c$ and $|a x+b|=c x+d$
- explain in words why a given function is a function or why it does not have an inverse
- find the inverse of a one-one function and form composite functions
- use sketch graphs to show the relationship between a function and its inverse.

1.1 Mappings

REMINDER

The table below shows one-one, many-one and one-many mappings.

Exercise 1.1

Determine whether each of these mappings is one-one, many-one or one-many.
$1 x \mapsto 2 x+3 \quad x \in \mathbb{R}$
$2 x \mapsto x^{2}+4$
$x \in \mathbb{R}$
$3 x \mapsto 2 x^{3} \quad x \in \mathbb{R}$
$4 x \mapsto 3^{x}$
$x \in \mathbb{R}$
$5 x \mapsto \frac{-1}{x} \quad x \in \mathbb{R}, x>0$
$6 x \mapsto x^{2}+1 \quad x \in \mathbb{R}, x \geqslant 0$
$7 x \mapsto \frac{2}{x} \quad x \in \mathbb{R}, x>0$
$8 x \mapsto \pm \sqrt{x}$
$x \in \mathbb{R}, x \geqslant 0$

CAMBRIDGE

Cambridge University Press
978-1-108-41285-8 - Cambridge IGCSE \circledR ® and O Level Additional Mathematics Practice Book
Muriel James
Excerpt
More Information

Cambridge IGCSE and O Level Additional Mathematics

1.2 Definition of a function

REMINDER
A function is a rule that maps each x value to just one y value for a defined set of input values. This means that mappings that are either $\left\{\begin{array}{l}\text { one-one } \\ \text { many-one }\end{array}\right.$ are called functions.

The mapping $x \mapsto x+1$ where $x \in \mathbb{R}$, is a one-one function.
The function can be defined as $\mathrm{f}: x \mapsto x+1, \quad x \in \mathbb{R}$ or $\mathrm{f}(x)=x+1, \quad x \in \mathbb{R}$.
The set of input values for a function is called the domain of the function.
The set of output values for a function is called the range (or image set) of the function.

WORKED EXAMPLE 1

The function f is defined by $\mathrm{f}(x)=(x-1)^{2}+4$ for $0 \leqslant x \leqslant 5$.
Find the range of f.

Answers

$\mathrm{f}(x)=(x-1)^{2}+4$ is a positive quadratic function so the graph will be of the form

This part of the expression is a square so it will always be $\geqslant 0$. The smallest value it can be is 0 . This occurs when $x=1$.

The minimum value of the expression is $0+4=4$ and this minimum occurs when $x=1$.
So the function $\mathrm{f}(x)=(x-1)^{2}+4$ will have a minimum point at the point $(1,4)$.
When $x=0, y=(0-1)^{2}+4=5$.
When $x=5, y=(5-1)^{2}+4=20$.

The range is $1 \leqslant \mathrm{f}(x) \leqslant 20$.

Exercise 1.2

1 Which of the mappings in Exercise 2.1 are functions?
2 Find the range for each of these functions.
a $\mathrm{f}(x)=x-9$,
$-2 \leqslant x \leqslant 8$
b $\mathrm{f}(x)=2 x-2$,
$0 \leqslant x \leqslant 6$
c $\mathrm{f}(x)=7-2 x, \quad-3 \leqslant x \leqslant 5$
d $\mathrm{f}(x)=2 x^{2}$,
$-4 \leqslant x \leqslant 3$
e $\mathrm{f}(x)=3^{x}$,
$-4 \leqslant x \leqslant 3$
f $\mathrm{f}(x)=\frac{-1}{x}$,
$1 \leqslant x \leqslant 6$

3 The function g is defined as $\mathrm{g}(x)=x^{2}-5$ for $x \geqslant 0$.
Find the range of g.
4 The function f is defined by $\mathrm{f}(x)=4-x^{2}$ for $x \in \mathbb{R}$.
Find the range of f.

5 The function f is defined by $\mathrm{f}(x)=3-(x-1)^{2}$ for $x \geqslant 1$.
Find the range of f.
6 The function f is defined by $\mathrm{f}(x)=(4 x+1)^{2}-2$ for $x \geqslant-\frac{1}{4}$.
Find the range of f.
7 The function f is defined by $\mathrm{f}: x \mapsto 8-(x-3)^{2}$ for $2 \leqslant x \leqslant 7$.
Find the range of f .
8 The function f is defined by $\mathrm{f}(x)=3-\sqrt{x-1}$ for $x \geqslant 1$.
Find the range of f .
9 Find the largest possible domain for the following functions.
a $\mathrm{f}(x)=\frac{1}{x+3}$
b $\mathrm{f}(x)=\frac{3}{x-2}$
c $\frac{4}{(x-3)(x+2)}$
d $\mathrm{f}(x)=\frac{1}{x^{2}-4}$
e $\mathrm{f}: x \mapsto \sqrt{x^{3}-4}$
f $\mathrm{f}: x \mapsto \sqrt{x+5}$
g $\mathrm{g}: x \mapsto \frac{1}{\sqrt{x-2}}$
h $\mathrm{f}: x \mapsto \frac{x}{\sqrt{3-3 x}}$
if: $\mathrm{f} \mapsto 1-x^{2}$

1.3 Composite functions

REMINDER

- When one function is followed by another function, the resulting function is called a composite function.
- $\mathrm{fg}(x)$ means the function g acts on x first, then f acts on the result.
- $\mathrm{f}^{2}(x)$ means $\mathrm{ff}(x)$, so you apply the function f twice.

WORKED EXAMPLE 2

$\mathrm{f}: x \mapsto 4 x+3$ for $x \in \mathbb{R}$
$\mathrm{g}: x \mapsto 2 x^{2}-5$ for $x \in \mathbb{R}$
Find $\operatorname{fg}(3)$.
Answer
$\mathrm{fg}(3)$
$=\mathrm{f}(13)$
$=4 \times 13+3$
$=55$

WORKED EXAMPLE 3

$\mathrm{g}(x)=2 x^{2}-2$ for $x \in \mathbb{R}$
$\mathrm{h}(x)=4-3 x$ for $x \in \mathbb{R}$
Solve the equation $\operatorname{hg}(x)=-14$.

```
Answers
hg(x) g acts on x first and g(x)=2\mp@subsup{x}{}{2}-2.
=h(2\mp@subsup{x}{}{2}-2) h
= 4-3(2\mp@subsup{x}{}{2}-2) Expand the brackets.
=4-6 (2 +6
= 10-6 (2
hg}(x)=-1
    -14=10-6\mp@subsup{x}{}{2}}\mathrm{ Set up and solve the equation.
    24=6x
        4= x 
        x= 土2
```


Exercise 1.3

$1 \mathrm{f}(x)=2-x^{2}$ for $x \in \mathbb{R}$
$\mathrm{g}(x)=\frac{x}{2}+3$ for $x \in \mathbb{R}$
Find the value of $\mathrm{gf}(4)$.
$2 \mathrm{f}(x)=(x-2)^{2}-2$ for $x \in \mathbb{R}$
Find $f^{2}(3)$.
3 The function f is defined by $\mathrm{f}(x)=1+\sqrt{x-3}$ for $x \geqslant 3$.
The function g is defined by $g(x)=\frac{-3}{x}-1$ for $x>0$.
Find $g f(7)$.
4 The function f is defined by $\mathrm{f}(x)=(x-2)^{2}+3$ for $x>-2$.
The function g is defined by $\mathrm{g}(x)=\frac{3 x+4}{x+2}$ for $x>2$.
Find fg(6).
$5 \mathrm{f}: x \mapsto 3 x-1$ for $x>0$
$\mathrm{g}: x \mapsto \sqrt{x}$ for $x>0$
Express each of the following in terms of f and g .
a $\quad x \mapsto 3 \sqrt{x}-1$

$$
\text { b } \quad x \mapsto \sqrt{3 x-1}
$$

6 The function f is defined by $\mathrm{f}: x \mapsto 2 x-1$ for $x \in \mathbb{R}$.
The function g is defined by $\mathrm{g}: x \mapsto \frac{8}{4-x}$ for $x \neq 4$.
Solve the equation $\operatorname{gf}(x)=5$.
$7 \mathrm{f}(x)=2 x^{2}+3$ for $x>0$
$\mathrm{g}(x)=\frac{5}{x}$ for $x>0$
Solve the equation $\mathrm{fg}(x)=4$.
8 The function f is defined, for $x \in \mathbb{R}$, by $\mathrm{f}: x \mapsto \frac{2 x-1}{x-3}, x \neq 3$.
The function g is defined, for $x \in \mathbb{R}$, by $\mathrm{g}: x \mapsto \frac{x+1}{2} x \neq 1$.
Solve the equation $\operatorname{fg}(x)=4$.

9 The function g is defined by $\mathrm{g}(x)=1-2 x^{2}$ for $x \geqslant 0$.
The function h is defined by $\mathrm{h}(x)=3 x-1$ for $x \geqslant 0$.
Solve the equation $\operatorname{gh}(x)=-3$ giving your answer(s) as exact value(s).
10 The function f is defined by $\mathrm{f}: x \mapsto x^{2}$ for $x \in \mathbb{R}$.
The function g is defined by $\mathrm{g}: x \mapsto x+2$ for $x \in \mathbb{R}$.
Express each of the following as a composite function, using only f and g .
a $\quad x \mapsto(x+2)^{2}$
b $x \mapsto x^{2}+2$
c $x \mapsto x+4$
d $x \mapsto x^{4}$

11 The functions f and g are defined for $x>0$ by $\mathrm{f}: x \mapsto x+3$ and $\mathrm{g}: x \mapsto \sqrt{x}$
Express in terms of f and g
a $x \mapsto \sqrt{x+3}$
b $x \mapsto x+6$
c $x \mapsto \sqrt{x}+3$

12 Given the functions $\mathrm{f}(x)=\sqrt{x}$ and $\mathrm{g}(x)=\frac{x-5}{2 x+1}$,
a Find the domain and range of g.
b Solve the equation $\mathrm{g}(x)=0$.
c Find the domain and range of fg.

1.4 Modulus functions

REMINDER

- The modulus (or absolute value) of a number is the magnitude of the number without a sign attached.
- The modulus of x, written as $|x|$, is defined as

$$
|x|=\left\{\begin{array}{cl}
x & \text { if } x>0 \\
0 & \text { if } x=0 \\
-x & \text { if } x<0
\end{array}\right.
$$

- The statement $|x|,=k$, where $\geqslant 0$, means that $x=k$ or $x=-k$.

WORKED EXAMPLE 4

```
a }|4x+3|=x+18\quad\mathrm{ b }|2\mp@subsup{x}{}{2}-9|=
```


Answers

a $|4 x+3|=x+18$
$4 x+3=x+18$ or $4 x+3=-x-18$

$$
\begin{array}{rlrl}
3 x & =15 & 5 x & =-21 \\
x & =5 & x & =-\frac{21}{5}
\end{array}
$$

Solution is : $x=5$ or $-\frac{21}{5}$
b $\quad\left|2 x^{2}-7\right|=9$

$$
2 x^{2}-7=9 \quad \text { or } 2 x^{2}-7=-9
$$

$$
2 x^{2}=16 \quad 2 x^{2}=-2
$$

$$
x^{2}=8 \quad x^{2}=-1
$$

$$
x= \pm 2 \sqrt{2}
$$

Solution is : $x= \pm 2 \sqrt{2}$

Exercise 1.4

1 Solve.
a $|2 x-1|=11$
b $|2 x+4|=8$
c $|6-3 x|=4$
d $\left|\frac{x-2}{5}\right|=6$
e $\left|\frac{3 x+4}{3}\right|=4$
f $\left|\frac{9-2 x}{3}\right|=4$
g $\left|\frac{x}{3}-6\right|=1$
h $\left|\frac{2 x+5}{3}+\frac{2 x}{5}\right|=3$
i $|2 x-6|=x$

TIP

Remember to check your answers to make sure that they satisfy the original equation.

2 Solve.
a $\left|\frac{2 x-5}{x+4}\right|=3$
b $\left|\frac{4 x+2}{x+3}\right|=3$
c $\left|1+\frac{2 x+5}{x+3}\right|=4$
d $|2 x-3|=3 x$
e $2 x+|3 x-4|=5$
f $7-|1-2 x|=3 x$

3 Solve giving your answers as exact values if appropriate.
a $\left|x^{2}-4\right|=5$
b $\left|x^{2}+5\right|=11$
c $\left|9-x^{2}\right|=3-x$
d $\left|x^{2}-3 x\right|=2 x$
e $\left|x^{2}-16\right|=2 x+1$
f $\left|2 x^{2}-1\right|=x+2$
g $\left|3-2 x^{2}\right|=x$
h $\left|x^{2}-4 x\right|=3-2 x$
i $\left|2 x^{2}-2 x+5\right|=1-x$

4 Solve each of the following pairs of simultaneous equations.
a $y=x+4$
b $y=1-x$ $y=\left|x^{2}-2\right|$ $y=\left|4 x^{2}-4 x\right|$

1.5 Graphs of $y=|f(x)|$ where $f(x)$ is linear

Exercise 1.5

1 Sketch the graphs of each of the following functions showing the coordinates of the points where the graph meets the axes.
a $y=|x-2|$
b $y=|3 x-3|$
c $y=|3-x|$
d $y=\left|\frac{1}{3} x-3\right|$
e $y=|6-3 x|$
f $y=\left|5-\frac{1}{2} x\right|$

2 a Complete the table of values for $y=3-|x-1|$.

x	-2	-1	0	1	2	3	4
y		1		3			

b Draw the graph of $y=3-|x-1|$ for $-2 \leqslant x \leqslant 4$.
3 Draw the graphs of each of the following functions.
a $y=|2 x|+2$
b $y=|x|-2$
c $y=4-|3 x|$
d $y=|x-1|+3$
e $y=|3 x-6|-2$
f $y=4-\left|\frac{1}{2} x\right|$

4 Given that each of these functions is defined for the domain $-3 \leqslant x \leqslant 4$, find the range of
a $\mathrm{f}: x \mapsto 6-3 x$
b $\mathrm{g}: x \mapsto|6-3 x|$
c $\mathrm{h}: x \mapsto 6-|3 x|$.

5 a f: $x \mapsto 2-2 x$ for $-1 \leqslant x \leqslant 5$
b $\mathrm{g}: x \mapsto|2-2 x|$ for $-1 \leqslant x \leqslant 5$
c $\mathrm{h}: x \mapsto 2-|2 x|$ for $-1 \leqslant x \leqslant 5$
Find the range of each function for $-1 \leqslant x \leqslant 5$.
6 a Sketch the graph of $y=|3 x-2|$ for $-4<x<4$, showing the coordinates of the points where the graph meets the axes.
b On the same diagram, sketch the graph of $y=x+3$.
c Solve the equation $|3 x-2|=x+3$.
7 A function f is defined by $\mathrm{f}(x)=2-|3 x-1|$, for $-1 \leqslant x \leqslant 3$.
a Sketch the graph of $y=\mathrm{f}(x)$.
b State the range of f .
c Solve the equation $\mathrm{f}(x)=-2$.
8 a Sketch on a single diagram, the graphs of $x+3 y=6$ and $y=|x+2|$.
b Solve the inequality $|x+2|<\frac{1}{3}(6-x)$.

1.6 Inverse functions

REMINDER

- The inverse of the function $\mathrm{f}(x)$ is written as $\mathrm{f}^{-1}(x)$.
- The domain of $\mathrm{f}^{-1}(x)$ is the range of $\mathrm{f}(x)$.
- The range of $\mathrm{f}^{-1}(x)$ is the domain of $\mathrm{f}(x)$.
- It is important to remember that not every function has an inverse.
- An inverse function $\mathrm{f}^{-1}(x)$ can exist if, and only if, the function $\mathrm{f}(x)$ is a one-one mapping.

WORKED EXAMPLE 5

$$
\mathrm{f}(x)=(x+3)^{2}-1 \text { for } x>-3
$$

a Find an expression for $\mathrm{f}^{-1}(x)$.
b Solve the equation $\mathrm{f}^{-1}(x)=3$.

Answers

a $\mathrm{f}(x)=(x+3)^{2}-1$ for $x>-3$
Step 1: Write the function as $y=\quad \longrightarrow y=(x+3)^{2}-1$
Step 2: Interchange the x and y variables. $\longrightarrow x=(y+3)^{2}-1$
Step 3: Rearrange to make y the subject. $\longrightarrow x+1=(y+3)^{2}$
$\sqrt{x+1}=y+3$ $y=\sqrt{x+1}-3$
$\mathrm{f}^{-1}(x)=\sqrt{x+1}-3$
b $\quad \mathrm{f}^{-1}(x)=3$.
$\sqrt{x+1}-3=3$

$$
\sqrt{x+1}=6
$$

$$
x+1=36
$$

$$
x=35
$$

Exercise 1.6

$1 \mathrm{f}(x)=(x+2)^{2}-3$ for $x \geqslant-2$.
Find an expression for $\mathrm{f}^{-1}(x)$.
$2 \mathrm{f}(x)=\frac{5}{x-2}$ for $x \geqslant 0$.
Find an expression for $\mathrm{f}^{-1}(x)$.
$3 \mathrm{f}(x)=(3 x-2)^{2}+3$ for $x \geqslant \frac{2}{3}$.
Find an expression for $\mathrm{f}^{-1}(x)$.
$4 \mathrm{f}(x)=4-\sqrt{x-2}$ for $x \geqslant 2$.
Find an expression for $\mathrm{f}^{-1}(x)$.
$5 \mathrm{f}: x \mapsto 3 x-4$ for $x>0$ $g: x \mapsto \frac{4}{4-x}$ for $x \neq 4$.
Express $\mathrm{f}^{-1}(x)$ and $\mathrm{g}^{-1}(x)$ in terms of x.
$6 \mathrm{f}(x)=(x-2)^{2}+3$ for $x>2$
a Find an expression for $\mathrm{f}^{-1}(x)$.
b Solve the equation $\mathrm{f}^{-1}(x)=\mathrm{f}(4)$.
$7 \mathrm{~g}(x)=\frac{3 x+1}{x-3}$ for $x>3$
a Find an expressions for $\mathrm{g}^{-1}(x)$ and comment on your result.
b Solve the equation $\mathrm{g}^{-1}(x)=6$.
$8 \mathrm{f}(x)=\frac{x}{2}-2$ for $x \in \mathbb{R}$

$$
g(x)=x^{2}-4 x \text { for } x \in \mathbb{R}
$$

a Find $\mathrm{f}^{-1}(x)$.
b Solve $\mathrm{fg}(x)=\mathrm{f}^{-1}(x)$ leaving answers as exact values.
$9 \mathrm{f}: x \mapsto \frac{3 x+1}{x-1}$ for $x \neq 1 \quad \mathrm{~g}: x \mapsto \frac{x-2}{3}$ for $x>-2$
Solve the equation $\mathrm{f}(x)=\mathrm{g}^{-1}(x)$.
10 If $\mathrm{f}(x)=\frac{x^{2}-9}{x^{2}+4} \quad x \in \mathbb{R}$ find an expression for $\mathrm{f}^{-1}(x)$.
11 If $\mathrm{f}(x)=2 \sqrt{x}$ and $\mathrm{g}(x)=5 x$, solve the equation $\mathrm{f}^{-1} \mathrm{~g}(x)=0.01$.

12 Find the value of the constant k such that $\mathrm{f}(x)=\frac{2 x-4}{x+k}$ is a self-inverse function.

13 The function f is defined by $\mathrm{f}(x)=x^{3}$. Find an expression for $\mathrm{g}(x)$ in terms of x
 for each of the following:
a $\operatorname{fg}(x)=3 x+2$
b $\operatorname{gf}(x)=3 x+2$

CAMBRIDGE

Cambridge University Press
978-1-108-41285-8 - Cambridge IGCSE \circledR ® and O Level Additional Mathematics Practice Book
Muriel James
Excerpt
More Information

Chapter 1: Functions

14 Given $\mathrm{f}(x)=2 x+1$ and $\mathrm{g}(x)=\frac{x+1}{2}$ find the following.
a f^{-1}
b g^{-1}
c $(\mathrm{fg})^{-1}$
d $(\mathrm{gf})^{-1}$
e $\mathrm{f}^{-1} \mathrm{~g}^{-1}$
f $\mathrm{g}^{-1} \mathrm{f}^{-1}$

Write down any observations from your results.
15 Given that $\operatorname{fg}(x)=\frac{x+2}{3}$ and $\mathrm{g}(x)=2 x+5$ find $\mathrm{f}(x)$.
16 Functions f and g are defined for all real numbers.
$\mathrm{g}(x)=x^{2}+7$ and $\mathrm{gf}(x)=9 x^{2}+6 x+8$. Find $\mathrm{f}(x)$.

1.7 The graph of a function and its inverse

REMINDER

The graphs of f and f^{-1} are reflections of each other in the line $y=x$.
This is true for all one-one functions and their inverse functions.
This is because: $\mathrm{ff}^{-1}(x)=x=\mathrm{f}^{-1} \mathrm{f}(x)$.

Some functions are called self-inverse functions because f and its inverse f^{-1} are the same.
If $\mathrm{f}(x)=\frac{1}{x}$ for $x \neq 0$, then $\mathrm{f}^{-1}(x)=\frac{1}{x}$ for $x \neq 0$.
So $\mathrm{f}(x)=\frac{1}{x}$ for $x \neq 0$ is an example of a self-inverse function.
When a function f is self-inverse, the graph of f will be symmetrical about the line $y=x$.

Exercise 1.7

1 On a copy of the grid, draw the graph of the inverse of the function $y=2^{-x}$.

Cambridge IGCSE and O Level Additional Mathematics

$2 \mathrm{f}(x)=x^{2}+5, x \geqslant 0$.
On the same axes, sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, showing the coordinates of any points where the curves meet the coordinate axes.
$3 \mathrm{~g}(x)=\frac{1}{2} x^{2}-4$ for $x \geqslant 0$.
Sketch, on a single diagram, the graphs of $y=\mathrm{g}(x)$ and $y=\mathrm{g}^{-1}(x)$, showing the coordinates of any points where the curves meet the coordinate axes.

4 The function f is defined by $\mathrm{f}(x)=3 x-6$ for all real values of x
a Find the inverse function $\mathrm{f}^{-1}(x)$.
b Sketch the graphs of $\mathrm{f}(x)$ and $\mathrm{f}^{-1}(x)$ on the same axes.
c Write down the point of intersection of the graphs $\mathrm{f}(x)$ and $\mathrm{f}^{-1}(x)$.
5 Given the function $\mathrm{f}(x)=x^{2}-2 x$ for $x \geqslant 1$.
a Explain why $\mathrm{f}^{-1}(x)$ exists and find $\mathrm{f}^{-1}(x)$.
b State the range of the function $\mathrm{f}^{-1}(x)$.
c Sketch the graphs of $\mathrm{f}(x)$ and $\mathrm{f}^{-1}(x)$ on the same axes.
d Write down where $\mathrm{f}^{-1}(x)$ crosses the y axis.
6 a By finding $\mathrm{f}^{-1}(x)$ show that $\mathrm{f}(x)=\frac{3 x-1}{2 x-3} \quad x \in \mathbb{R}, x \neq \frac{3}{2}$ is a self-inverse function.
b Sketch the graphs of $\mathrm{f}(x)$ and $\mathrm{f}^{-1}(x)$ on the same axes.
c Write down the coordinates of the intersection of the graphs with the coordinate axes.

Summary

Functions

A function is a rule that maps each x-value to just one y-value for a defined set of input values.
Mappings that are either $\left\{\begin{array}{l}\text { one-one } \\ \text { many-one }\end{array}\right.$ are called functions.
The set of input values for a function is called the domain of the function.
The set of output values for a function is called the range (or image set) of the function.

Modulus function

The modulus of x, written as $|x|$, is defined as

$$
|x|=\left\{\begin{aligned}
x & \text { if } x>0 \\
0 & \text { if } x=0 \\
-x & \text { if } x<0
\end{aligned}\right.
$$

Composite functions

$\mathrm{fg}(x)$ means the function g acts on x first, then f acts on the result.
$\mathrm{f}^{2}(x)$ means $\mathrm{ff}(x)$.

