Cambridge University Press 978-1-108-41285-8 — Cambridge IGCSE® and O Level Additional Mathematics Practice Book Muriel James Excerpt <u>More Information</u>

Chapter 1: Functions

This section will show you how to:

- understand and use the terms: function, domain, range (image set), one-one function, inverse function and composition of functions
- use the notation $f(x) = 2x^3 + 5$, $f: x \mapsto 5x 3$, $f^{-1}(x)$ and $f^2(x)$
- understand the relationship between y = f(x) and y = |f(x)|
- solve graphically or algebraically equations of the type |ax + b| = c and |ax + b| = cx + d
- explain in words why a given function is a function or why it does not have an inverse
- find the inverse of a one-one function and form composite functions
- use sketch graphs to show the relationship between a function and its inverse.

1.1 Mappings

Exercise 1.1

Determine whether each of these mappings is one-one, many-one or one-many.

1	$x \mapsto 2x + 3$	$x \in \mathbb{R}$	2	$x \mapsto x^2 + 4$	$x \in \mathbb{R}$
3	$x \mapsto 2x^3$	$x \in \mathbb{R}$	4	$x \mapsto 3^x$	$x \in \mathbb{R}$
5	$x \mapsto \frac{-1}{x}$	$x \in \mathbb{R}, \ x > 0$	6	$x \mapsto x^2 + 1$	$x \in \mathbb{R}, \ x \ge 0$
7	$x \mapsto \frac{2}{x}$	$x \in \mathbb{R}, \ x > 0$	8	$x \mapsto \pm \sqrt{x}$	$x \in \mathbb{R}, x \ge 0$

Cambridge University Press 978-1-108-41285-8 — Cambridge IGCSE® and O Level Additional Mathematics Practice Book Muriel James Excerpt

More Information

Cambridge IGCSE and O Level Additional Mathematics

1.2 Definition of a function

REMINDER A function is a rule that maps each *x* value to just one *y* value for a defined set of input values.

This means that mappings that are either $\begin{cases} \text{one-one} \\ \text{many-on} \end{cases}$

one-one many-one are called functions.

The mapping $x \mapsto x + 1$ where $x \in \mathbb{R}$, is a one-one function.

The function can be defined as $f : x \mapsto x + 1$, $x \in \mathbb{R}$ or f(x) = x + 1, $x \in \mathbb{R}$.

The set of input values for a function is called the **domain** of the function.

The set of output values for a function is called the **range** (or image set) of the function.

WORKED EXAMPLE 1

The function f is defined by $f(x) = (x - 1)^2 + 4$ for $0 \le x \le 5$. Find the range of f.

Answers

 $f(x) = (x - 1)^2 + 4$ is a positive quadratic function so the graph will be of the form

$$(x-1)^2 + 4$$

This part of the expression is a square so it will always be ≥ 0 . The smallest value it can be is 0. This occurs when x = 1.

The minimum value of the expression is 0 + 4 = 4 and this minimum occurs when x = 1.

So the function $f(x) = (x - 1)^2 + 4$ will have a minimum point at the point (1, 4). When x = 0, $y = (0 - 1)^2 + 4 = 5$. When x = 5, $y = (5 - 1)^2 + 4 = 20$. The range is $1 \le f(x) \le 20$.

Exercise 1.2

- 1 Which of the mappings in **Exercise 2.1** are functions?
- **2** Find the range for each of these functions.

а	$\mathbf{f}(x) = x - 9,$	$-2 \le x \le 8$	b $f(x) = 2x - 2$,	$0 \le x \le 6$
C	$\mathbf{f}(x) = 7 - 2x,$	$-3 \le x \le 5$	d $f(x) = 2x^2$,	$-4 \le x \le 3$
e	$\mathbf{f}(x) = 3^x,$	$-4 \le x \le 3$	f $f(x) = \frac{-1}{x}$,	$1 \le x \le 6$

- 3 The function g is defined as g(x) = x² 5 for x ≥ 0.
 Find the range of g.
- 4 The function f is defined by f(x) = 4 x² for x ∈ ℝ.
 Find the range of f.

Cambridge University Press 978-1-108-41285-8 — Cambridge IGCSE® and O Level Additional Mathematics Practice Book Muriel James Excerpt <u>More Information</u>

Chapter 1: Functions

- **5** The function f is defined by $f(x) = 3 (x 1)^2$ for $x \ge 1$. Find the range of f.
- 6 The function f is defined by $f(x) = (4x+1)^2 2$ for $x \ge -\frac{1}{4}$. Find the range of f.
- 7 The function f is defined by $f : x \mapsto 8 (x 3)^2$ for $2 \le x \le 7$. Find the range of f.
- 8 The function f is defined by $f(x) = 3 \sqrt{x-1}$ for $x \ge 1$. Find the range of f.
- **9** Find the largest possible domain for the following functions.

а	$f(x) = \frac{1}{x+3}$	b	$f(x) = \frac{3}{x-2}$	C	$\frac{4}{(x-3)(x+2)}$
d	$f(x) = \frac{1}{x^2 - 4}$	е	$f: x \mapsto \sqrt{x^3 - 4}$	f	$f: x \mapsto \sqrt{x+5}$
g	$g: x \mapsto \frac{1}{\sqrt{x-2}}$	h	$f: x \mapsto \frac{x}{\sqrt{3-3x}}$	i	$f: x \mapsto 1 - x^2$

1.3 Composite functions

REMINDER

- When one function is followed by another function, the resulting function is called a **composite function.**
- fg(x) means the function g acts on x first, then f acts on the result.
- $f^2(x)$ means ff(x), so you apply the function f twice.

WORKED EXAMPLE 2

```
f: x \mapsto 4x + 3 for x \in \mathbb{R}
g: x \mapsto 2x^2 - 5 for x \in \mathbb{R}
Find fg(3).
```

Answer

 $fg(3) = f(13) = 4 \times 13 + 3 = 55$

g acts on 3 first and $g(3) = 2 \times 3^2 - 5 = 13$.

WORKED EXAMPLE 3

 $g(x) = 2x^{2} - 2 \text{ for } x \in \mathbb{R}$ h(x) = 4 - 3x for $x \in \mathbb{R}$ Solve the equation hg(x) = -14.

Cambridge University Press 978-1-108-41285-8 — Cambridge IGCSE® and O Level Additional Mathematics Practice Book Muriel James Excerpt

More Information

Cambridge IGCSE and O Level Additional Mathematics

Answershg(x)g acts on x first and $g(x) = 2x^2 - 2$.= h($2x^2 - 2$)h is the function 'triple and take from 4'.= $4 - 3(2x^2 - 2)$ Expand the brackets.= $4 - 6x^2 + 6$ = $10 - 6x^2$ hg(x) = -14 $-14 = 10 - 6x^2$ $24 = 6x^2$ Set up and solve the equation. $24 = 6x^2$ $x = \pm 2$

Exercise 1.3

- 1 $f(x) = 2 x^2$ for $x \in \mathbb{R}$ $g(x) = \frac{x}{2} + 3$ for $x \in \mathbb{R}$ Find the value of gf(4).
- 2 $f(x) = (x 2)^2 2$ for x ∈ ℝ Find $f^2(3)$.

3 The function f is defined by $f(x) = 1 + \sqrt{x-3}$ for $x \ge 3$. The function g is defined by $g(x) = \frac{-3}{x} - 1$ for x > 0. Find gf(7).

4 The function f is defined by $f(x) = (x - 2)^2 + 3$ for x > -2. The function g is defined by $g(x) = \frac{3x + 4}{x + 2}$ for x > 2. Find fg(6).

- 5 $f: x \mapsto 3x 1$ for x > 0 $g: x \mapsto \sqrt{x}$ for x > 0Express each of the following in terms of f and g. a $x \mapsto 3\sqrt{x} - 1$ b $x \mapsto \sqrt{3x - 1}$
- **6** The function f is defined by $f: x \mapsto 2x 1$ for $x \in \mathbb{R}$. The function g is defined by $g: x \mapsto \frac{8}{4-x}$ for $x \neq 4$. Solve the equation gf(x) = 5.

7
$$f(x) = 2x^2 + 3$$
 for $x > 0$
 $g(x) = \frac{5}{x}$ for $x > 0$
Solve the equation $fg(x) = 4$.

8 The function f is defined, for $x \in \mathbb{R}$, by $f: x \mapsto \frac{2x-1}{x-3}, x \neq 3$. The function g is defined, for $x \in \mathbb{R}$, by $g: x \mapsto \frac{x+1}{2} x \neq 1$. Solve the equation fg(x) = 4.

ノ TIP

Before writing your final answers, compare your solutions with the domains of the original functions.

Cambridge University Press 978-1-108-41285-8 — Cambridge IGCSE® and O Level Additional Mathematics Practice Book Muriel James Excerpt <u>More Information</u>

Chapter 1: Functions

9 The function g is defined by g(x) = 1 - 2x² for x ≥ 0.
The function h is defined by h(x) = 3x - 1 for x ≥ 0.
Solve the equation gh(x) = -3 giving your answer(s) as exact value(s).

10 The function f is defined by $f : x \mapsto x^2$ for $x \in \mathbb{R}$.

The function g is defined by $g: x \mapsto x + 2$ for $x \in \mathbb{R}$.

Express each of the following as a composite function, using only f and g.

a $x \mapsto (x+2)^2$ **b** $x \mapsto x^2+2$ **c** $x \mapsto x+4$ **d** $x \mapsto x^4$

11 The functions f and g are defined for x > 0 by $f: x \mapsto x+3$ and $g: x \mapsto \sqrt{x}$ Express in terms of f and g

a $x \mapsto \sqrt{x+3}$ **b** $x \mapsto x+6$ **c** $x \mapsto \sqrt{x+3}$

12 Given the functions $f(x) = \sqrt{x}$ and $g(x) = \frac{x-5}{2x+1}$,

- **a** Find the domain and range of g.
- **b** Solve the equation g(x) = 0.
- **c** Find the domain and range of fg.

1.4 Modulus functions

- The **modulus** (or **absolute value**) of a number is the magnitude of the number without a sign attached.
- The modulus of x, written as |x|, is defined as

$$|x| = \begin{cases} x & \text{if } x > 0\\ 0 & \text{if } x = 0 \end{cases}$$

$$-x$$
 if $x < 0$

• The statement |x|, = k, where ≥ 0 , means that x = k or x = -k.

WORKED EXAMPLE 4

```
a |4x+3| = x+18 b |2x^2-9| = 7
Answers
a |4x+3| = x+18
   4x + 3 = x + 18 or 4x + 3 = -x - 18
                          5x = -21
       3x = 15
        x = 5
                           x = -\frac{21}{5}
   Solution is : x = 5 or -\frac{21}{5}
b |2x^2 - 7| = 9
   2x^2 - 7 = 9 or 2x^2 - 7 = -9
                     2x^2 = -2
       2x^2 = 16
                          x^2 = -1
        x^2 = 8
         x = \pm 2\sqrt{2}
    Solution is : x = \pm 2\sqrt{2}
```

Cambridge University Press 978-1-108-41285-8 — Cambridge IGCSE® and O Level Additional Mathematics Practice Book Muriel James Excerpt

More Information

Cambridge IGCSE and O Level Additional Mathematics

Exercise 1.4

1 Solve.
a
$$|2x - 1| = 11$$

b $|2x + 4| = 8$
c $|6 - 3x| = 4$
d $\left|\frac{x - 2}{5}\right| = 6$
e $\left|\frac{3x + 4}{3}\right| = 4$
f $\left|\frac{9 - 2x}{3}\right| = 4$
g $\left|\frac{x}{3} - 6\right| = 1$
h $\left|\frac{2x + 5}{3} + \frac{2x}{5}\right| = 3$
i $|2x - 6| = x$

TIP

Remember to check your answers to make sure that they satisfy the original equation.

2 Solve.

а	$\left \frac{2x-5}{x+4}\right = 3$	b	$\left \frac{4x+2}{x+3}\right = 3$	c	$\left 1 + \frac{2x+5}{x+3}\right = 4$
d	2x-3 = 3x	e	2x + 3x - 4 = 5	f	7 - 1 - 2x = 3x

3 Solve giving your answers as exact values if appropriate.

a $ x^2 - 4 = 5$	b $ x^2 + 5 = 11$	c $ 9 - x^2 = 3 - x$
d $ x^2 - 3x = 2x$	e $ x^2 - 16 = 2x + 1$	f $ 2x^2 - 1 = x + 2$
g $ 3-2x^2 = x$	h $ x^2 - 4x = 3 - 2x$	i $ 2x^2 - 2x + 5 = 1 - x$

4 Solve each of the following pairs of simultaneous equations.

a y = x + 4 $y = |x^2 - 2|$ **b** y = 1 - x $y = |4x^2 - 4x|$

1.5 Graphs of y = |f(x)| where f(x) is linear

Exercise 1.5

 Sketch the graphs of each of the following functions showing the coordinates of the points where the graph meets the axes.

а	y = x - 2	b	y = 3x - 3	С	y = 3 - x
d	$y = \left \frac{1}{3}x - 3 \right $	e	y = 6 - 3x	f	$y = \left 5 - \frac{1}{2}x \right $

2 a Complete the table of values for y = 3 - |x - 1|.

x	-2	-1	0	1	2	3	4
у		1		3			

b Draw the graph of y = 3 - |x - 1| for $-2 \le x \le 4$.

3 Draw the graphs of each of the following functions.

а	y = 2x + 2	b	y = x - 2	С	y = 4 - 3x
d	y = x - 1 + 3	e	y = 3x - 6 - 2	f	$y = 4 - \left \frac{1}{2}x\right $

4 Given that each of these functions is defined for the domain $-3 \le x \le 4$, find the range of

a $f: x \mapsto 6-3x$ **b** $g: x \mapsto |6-3x|$ **c** $h: x \mapsto 6-|3x|$.

Cambridge University Press 978-1-108-41285-8 — Cambridge IGCSE® and O Level Additional Mathematics Practice Book Muriel James Excerpt <u>More Information</u>

Chapter 1: Functions

- 5 a $f: x \mapsto 2 2x$ for $-1 \le x \le 5$
 - **b** $g: x \mapsto |2 2x|$ for $-1 \le x \le 5$
 - **c** $h: x \mapsto 2 |2x|$ for $-1 \le x \le 5$

Find the range of each function for $-1 \le x \le 5$.

- **6** a Sketch the graph of y = |3x 2| for -4 < x < 4, showing the coordinates of the points where the graph meets the axes.
 - **b** On the same diagram, sketch the graph of y = x + 3.
 - **c** Solve the equation |3x 2| = x + 3.
- 7 A function f is defined by f(x) = 2 |3x 1|, for $-1 \le x \le 3$.
 - **a** Sketch the graph of y = f(x).
 - **b** State the range of f.
 - **c** Solve the equation f(x) = -2.
- 8 a Sketch on a single diagram, the graphs of x + 3y = 6 and y = |x + 2|.
 - **b** Solve the inequality $|x+2| < \frac{1}{2}(6-x)$.

1.6 Inverse functions

REMINDER

- The inverse of the function f(x) is written as $f^{-1}(x)$.
- The domain of $f^{-1}(x)$ is the range of f(x).
- The range of $f^{-1}(x)$ is the domain of f(x).
- It is important to remember that not every function has an inverse.
- An inverse function $f^{-1}(x)$ can exist if, and only if, the function f(x) is a one-one mapping.

WORKED EXAMPLE 5

 $f(x) = (x+3)^2 - 1$ for x > -3

- **a** Find an expression for $f^{-1}(x)$.
- **b** Solve the equation $f^{-1}(x) = 3$.

Answers

- **a** $f(x) = (x+3)^2 1$ for x > -3
 - Step 1: Write the function as y =Step 2: Interchange the *x* and *y* variables. $y = (x + 3)^2 - 1$ $x = (y + 3)^2 - 1$ Step 3: Rearrange to make *y* the subject. $x + 1 = (y + 3)^2$ $\sqrt{x + 1} = y + 3$ $y = \sqrt{x + 1} - 3$

 $f^{-1}(x) = \sqrt{x+1} - 3$

b $f^{-1}(x) = 3$.

 $\sqrt{x+1} - 3 = 3$ $\sqrt{x+1} = 6$ x+1 = 36

x = 35

Cambridge University Press 978-1-108-41285-8 — Cambridge IGCSE® and O Level Additional Mathematics Practice Book Muriel James Excerpt <u>More Information</u>

Cambridge IGCSE and O Level Additional Mathematics

Exercise 1.6

- 1 $f(x) = (x+2)^2 3$ for $x \ge -2$. Find an expression for $f^{-1}(x)$.
- 2 $f(x) = \frac{5}{x-2}$ for $x \ge 0$. Find an expression for $f^{-1}(x)$.
- **3** $f(x) = (3x 2)^2 + 3$ for $x \ge \frac{2}{3}$. Find an expression for $f^{-1}(x)$.
- 4 $f(x) = 4 \sqrt{x-2}$ for $x \ge 2$. Find an expression for $f^{-1}(x)$.
- 5 f: $x \mapsto 3x 4$ for x > 0

 $g: x \mapsto \frac{4}{4-x}$ for $x \neq 4$.

Express $f^{-1}(x)$ and $g^{-1}(x)$ in terms of x.

- **6** $f(x) = (x-2)^2 + 3$ for x > 2
 - **a** Find an expression for $f^{-1}(x)$.
 - **b** Solve the equation $f^{-1}(x) = f(4)$.

7
$$g(x) = \frac{3x+1}{x-3}$$
 for $x > 3$

- **a** Find an expressions for $g^{-1}(x)$ and comment on your result.
- **b** Solve the equation $g^{-1}(x) = 6$.
- 8 $f(x) = \frac{x}{2} 2$ for $x \in \mathbb{R}$ $g(x) = x^2 - 4x$ for $x \in \mathbb{R}$
 - **a** Find $f^{-1}(x)$.
 - **b** Solve $fg(x) = f^{-1}(x)$ leaving answers as exact values.
- 9 $f: x \mapsto \frac{3x+1}{x-1}$ for $x \neq 1$ Solve the equation $f(x) = g^{-1}(x)$. $g: x \mapsto \frac{x-2}{3}$ for x > -2
- **10** If $f(x) = \frac{x^2 9}{x^2 + 4}$ $x \in \mathbb{R}$ find an expression for $f^{-1}(x)$.
- **11** If $f(x) = 2\sqrt{x}$ and g(x) = 5x, solve the equation $f^{-1}g(x) = 0.01$.
- **12** Find the value of the constant *k* such that $f(x) = \frac{2x-4}{x+k}$ is a self-inverse function.
- **13** The function f is defined by $f(x) = x^3$. Find an expression for g(x) in terms of x for each of the following:
 - **a** fg(x) = 3x + 2
 - **b** gf(x) = 3x + 2

TIP A self-inverse function is one for which $f(x) = f^{-1}(x)$, for all values of x in the domain.

8

Cambridge University Press 978-1-108-41285-8 — Cambridge IGCSE® and O Level Additional Mathematics Practice Book Muriel James Excerpt

More Information

14 Given f(x) = 2x + 1 and $g(x) = \frac{x+1}{2}$ find the following. **a** f^{-1} **b** g^{-1} **c** $(fg)^{-1}$ **d** $(gf)^{-1}$ **e** $f^{-1}g^{-1}$ **f** $g^{-1}f^{-1}$

Write down any observations from your results.

15 Given that $fg(x) = \frac{x+2}{3}$ and g(x) = 2x + 5 find f(x).

 ${\bf 16}$ Functions f and g are defined for all real numbers.

 $g(x) = x^2 + 7$ and $gf(x) = 9x^2 + 6x + 8$. Find f(x).

1.7 The graph of a function and its inverse

REMINDER

The graphs of f and f^{-1} are reflections of each other in the line y = x. This is true for all one-one functions and their inverse functions. This is because $f_{x}^{-1}(y) = y = f_{x}^{-1}f(y)$

This is because: $ff^{-1}(x) = x = f^{-1}f(x)$.

Some functions are called **self-inverse functions** because f and its inverse f^{-1} are the same.

If $f(x) = \frac{1}{x}$ for $x \neq 0$, then $f^{-1}(x) = \frac{1}{x}$ for $x \neq 0$.

So $f(x) = \frac{1}{x}$ for $x \neq 0$ is an example of a self-inverse function.

When a function f is self-inverse, the graph of f will be symmetrical about the line y = x.

Exercise 1.7

1 On a copy of the grid, draw the graph of the inverse of the function $y = 2^{-x}$.

Cambridge University Press 978-1-108-41285-8 — Cambridge IGCSE® and O Level Additional Mathematics Practice Book Muriel James Excerpt <u>More Information</u>

Cambridge IGCSE and O Level Additional Mathematics

2 $f(x) = x^2 + 5, x \ge 0.$

On the same axes, sketch the graphs of y = f(x) and $y = f^{-1}(x)$, showing the coordinates of any points where the curves meet the coordinate axes.

3 $g(x) = \frac{1}{2}x^2 - 4$ for $x \ge 0$.

Sketch, on a single diagram, the graphs of y = g(x) and $y = g^{-1}(x)$, showing the coordinates of any points where the curves meet the coordinate axes.

- 4 The function f is defined by f(x) = 3x 6 for all real values of x
 - **a** Find the inverse function $f^{-1}(x)$.
 - **b** Sketch the graphs of f(x) and $f^{-1}(x)$ on the same axes.
 - **c** Write down the point of intersection of the graphs f(x) and $f^{-1}(x)$.
- **5** Given the function $f(x) = x^2 2x$ for $x \ge 1$.
 - **a** Explain why $f^{-1}(x)$ exists and find $f^{-1}(x)$.
 - **b** State the range of the function $f^{-1}(x)$.
 - **c** Sketch the graphs of f(x) and $f^{-1}(x)$ on the same axes.
 - **d** Write down where $f^{-1}(x)$ crosses the *y* axis.
- **6** a By finding $f^{-1}(x)$ show that $f(x) = \frac{3x-1}{2x-3}$ $x \in \mathbb{R}$, $x \neq \frac{3}{2}$ is a self-inverse function.
 - **b** Sketch the graphs of f(x) and $f^{-1}(x)$ on the same axes.
 - **c** Write down the coordinates of the intersection of the graphs with the coordinate axes.

Summary

Functions

10

A function is a rule that maps each *x*-value to just one *y*-value for a defined set of input values.

Mappings that are either

 $\begin{cases} one-one \\ many-one \end{cases} are called functions. \end{cases}$

The set of input values for a function is called the **domain** of the function.

The set of output values for a function is called the **range** (or image set) of the function.

Modulus function

The modulus of x, written as |x|, is defined as

 $|x| = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -x & \text{if } x < 0 \end{cases}$

Composite functions

fg(x) means the function g acts on x first, then f acts on the result.

 $f^2(x)$ means ff(x).