

INDEX

action effects, 3, 19, 35, 297 AS/NZS 4671-2001 Steel Reinforcing active earth pressure coefficient, 348 Materials, 15 American Concrete Institute (ACI) AS/NZS 4672.1–2007 Steel Prestressing ACI 318-1995 Building Code Requirements *Materials Part 1 – General Requirements*, for Structural Concrete, 46, 114 412, 475 ACI 318-2002 Building Code Requirements for Structural Concrete, 387 backfills ACI 318-2005 Building Code Requirements cohesionless, 353, 355 for Structural Concrete, 386 definition of, 311 ACI 318-2008 Building Code Requirements granular, 353 for Structural Concrete, 386 internal friction angle of, 353 ACI 318-2014 Building Code Requirements pressure exerted by, 311, 345-6 for Structural Concrete, 63, 68, 100, 107, properties of, 353-4 112, 297, 299, 303 slope angle of, 348 balanced failure anchorage. See bond; end blocks arbitrary beam sections. See beams:nonstandard of beams, 22, 46 sections of columns, 260, 265 arbitrary column sections. See columns bar groups (areas of), 15-16 Australian Standards (AS) beams AS 1012 Concrete Test Methods, 13-15, 18 balanced failure of, 22-3, 46 AS 1379-2007 Specification and Supply of compression failure of, 23, 26 Concrete, 13 definitions of analysis and design of, 19 AS 1480-1982 SAA Concrete Structures Code, doubly reinforced, 19, 31, 36, 40, 44-5, 50-2, 3-4, 11, 26, 41, 46, 64, 66, 269 54, 67, 70 AS 1481-1978 SAA Prestressed Concrete effective (reliable) moment capacity, 27 Code. 3 flanged sections. See flanged beams AS 3600-1988 Concrete Structures, 3, free design of, 35 nonstandard sections, 74 19, 127 AS 3600-1994 Concrete Structures, 3, 103 over-reinforced, 23-4, 26, 29, 31, 51 AS 3600-2001 Concrete Structures, 3, 24, 103, restricted design of, 35-6, 40, 69, 243, 331 serviceability design of, 97, 102 AS 3600-2009 Concrete Structures, 3-5, 9-10, singly reinforced, 22, 28, 31, 35, 40, 47, 51, 69, 13, 15, 19, 22, 37, 39, 64, 94, 98, 103, 112, tension failure of, 23, 25, 41, 80, 460, 463 127, 140, 157, 165, 172, 175, 180, 185, 193, 195, 210, 219, 257-8, 284, 296, 316, 377, T-sections. See T-beams 387-8, 390-1, 394, 416, 437, 458, under-reinforced, 23-4, 28, 32 bearing stress, 473, 475, 477, 480 473-4 AS 4678–2002 Earth-Retaining Structures, bond 348, 353 anchorage, 81, 171, 173 AS 5100.5-2017 Bridge Design Part 5 deformed bars, 172 failure, 20, 171, 474 Concrete, 467 AS/NZS 1170.0-2002 Structural Design mechanism of resistance, 172 Actions - General Principles, 5, 7 plain bars, 172, 176, 178 AS/NZS 1170.1-2002 Dead and Live Load strength, 171-3, 177 Code, 18, 211, 238 ultimate stress, 171

496

box beams, 108, 475	concrete cover for reinforcement
box systems, 65	and exposure classifications, 4
bundled bars, 9, 12, 178-9, 287	for fire resistance, 4, 7, 9, 35, 39, 81, 213
development length of, 179	for rigid formwork and intense compaction, 10
bursting stress, 473, 476–7	for standard formwork and compaction, 10
	maximum, 9, 112
cantilever beams, 95-6, 104, 106, 120-1, 148,	minimum, 9, 134
151, 182, 451–2	continuous beams, 64, 81, 96, 102-3, 106
capacity reduction factor	crack control
for bending moment, 3, 20, 27	beams, 9, 11, 94
for columns, 266, 279	end blocks, 481
for shear, 129	slabs, 11, 192, 210, 222
for torsion, 157	struts, 389
for walls, 298	walls, 304, 309
characteristic strength of concrete	crack widths
compressive, 4, 13, 22	ACI Code on, 114
strength grades, 4, 10	average, 112, 114
tensile, 14, 155	British Standard on, 112, 114
chemical bond, 172	Eurocode on, 112, 114
coefficients	formulas on, 114
active earth pressure, 348	maximum, 112, 115
passive earth pressure, 348	cracking moment, 14, 99, 109, 459, 463
thermal expansion of concrete, 15	creep, of concrete, 15, 104, 109, 193, 416
thermal expansion of steel, 17	criteria for yielding of reinforcement
cogs, 173, 176	in doubly reinforced beams, 40
development length of, 177	in singly reinforced beams, 31
column strips. See slabs	in tension, 46
columns	critical shear perimeter, 227, 229, 326, 332, 336,
arbitrary cross-sections, 269	343, 485
balanced failure of, 260, 264-5	critical stress state method
biaxial bending effects on, 285	analysis, 403, 414
braced, 281-3	Case A prestressing, 425–7, 438, 450, 452
capacity reduction factor for, 257-8	Case B prestressing, 425–7, 429, 449
centrally loaded, 256-7	criteria for, 437
compression failure of, 260-1, 264, 267, 280	design, 403, 438, 440
in uniaxial bending, 256, 258	maximum external moments, 422, 425, 450,
interaction diagrams for, 256, 263, 266-7	453
moment magnifiers for, 257, 282	minimum external moments, 422, 425, 450, 453
short, 281, 285	permissible stresses, 427, 458
tension failure of, 260-1, 264-5, 267, 280	theory, 403, 407
unbraced, 284	
Comité Européen du Béton - Fédération	damping, 94
Internationale de la Precontrainte	decompression points, 261-2, 268
(CEB-FIP), 63	deflection
compression failure	accumulated, 108
of beams, 23, 26	effect of creep and shrinkage, 40, 104
of columns, 260–1, 264, 267	effective span for, 96

deflection (cont.)	with openings, 236
formulas, 95	with studs, 236
limits, 95	flat slabs
long-term, 94, 102, 104	definition of, 186–7
multiplier methods for, 104, 106	with drop panels, 194
of slabs, 193, 209, 236	without drop panels, 194, 248
short-term, 98	footings
total, 94, 104, 108, 248	asymmetrical, 312, 318–19, 325
under repeated loading, 107	column, 311, 325, 332, 339, 344
density of concrete, 15, 18	concentrically loaded, 317
design strips. See slabs	definition of, 311
development length	pad, 325, 328
basic, 171, 474	subjected to biaxial bending, 325
of bars in compression, 177	symmetrical, 312, 318
of bundled bars, 178	under eccentric loads, 317
of cogs, 177	wall, 311, 313, 316, 318, 325, 328
of deformed bars, 173, 176	wan, 311, 313, 310, 310, 323, 320
of hooks, 177	grades of concrete, 13–14
of lapped splices, 178	grillage structures, 155, 187, 378
of plain bars, 178	gimage structures, 133, 107, 370
refined, 173	helices, 179, 287, 477
diagonal cracks, 125	hooks, 173, 176, 182
doubly reinforced beams. See beams	development length of, 177
drop panels, 187, 216, 227, 248	development length of, 177
durability design, 4, 7, 9, 14, 35, 81, 94, 437	idealised frames
durability design, 4, 7, 9, 14, 55, 61, 74, 457	analysis of, 188, 216, 222–3, 226, 242
effective flange width	definition of, 216, 222
code recommendations for, 63	distribution of slab moments in, 225
definition of, 63	member rigidities of, 224
formulas, 64–5, 116, 129	thickness of, 223–4, 242
effective moment of inertia. See moment of inertia	interaction diagrams (for columns), 255, 263, 266
effective span, 96	286, 289
end blocks	260, 269
anchorage, 403, 473, 475–7	lapped splices, 178–80
post-tensioning systems, 475	development length of, 178
pretensioning systems, 473	L-beams, 64, 70, 106, 112
reinforcement, 473, 477	limit state design philosophy, 3
exposure classifications, 4, 8	load combinations, 5, 7, 100, 210, 224, 238, 241 359, 361–2
fire resistance design, 4, 7, 9, 35, 39, 81, 94, 297,	load factors
437–8	combination, 5
flange-beams, 67, 69–70, 72–3	dead, 315, 320
flanged beams, 61, 63, 100, 158, 224	earthquake combination, 6
flat plates	live, 6
definition of, 186–7	long-term, 6
multistorey, 236, 249	short-term, 7
reinforcement detailing for, 221	loss of prestress, 416, 419, 428-9

middle strips. See slabs	prestressed concrete
minimum bending reinforcement	analysis and design, 403, 431
for beams, 35	beams, 403, 407, 414, 421–2, 437, 443, 458,
for slabs, 192	460
for walls, 303	flat plates, 236
minimum shear reinforcement, 132	fully prestressed, 403, 414, 431
minimum torsional reinforcement, 160,	maximum permissible span, 403
230	partially prestressed, 403, 409, 414, 437, 460
mix design of concrete, 13	precast girders, 413, 488
modulus of elasticity	principle, 406
concrete, 14	prestressing
steel, 17	forces, 414, 438-9, 451, 473
moment coefficients	jacks, 408, 416
for one-way slabs, 191, 195	non-engineering examples of, 404
for two-way slabs, 188, 202	post-tensioned, 407–8
moment magnifiers (for columns), 257, 283, 289,	pretensioned, 407–8
301	tendons, 411, 440, 473
moment of inertia	punching shear
Branson's formula for, 99	basic strength, 227
effective, 98–100	definition of, 226
equivalent, 109	for column footings, 336
for fully cracked sections, 99	in two-way slabs, 220
gross (of uncracked sections), 98, 101, 224,	of pile caps, 342
407, 420	strength of slabs, 227-8
moment redistribution, 189	and unbalanced moment, 220
multibox system, 65	
multispan two-way slabs	reinforcement
bending moments in, 219	bar areas, 15
definition of, 216	bursting, 389, 395, 398
layout, 207	Class L, 15, 27, 190-1
reinforcement detailing for, 221	Class N, 15, 17, 27-9, 45, 71, 190, 203, 238
	for end blocks. See end blocks
neutral axis parameter, 23-4, 99, 463, 484	for shear. See shear
neutral axis position, 52, 66, 75, 99, 123, 260,	for torsion. See torsion
483	for walls. See walls
	ratios. See steel ratios
one-way slabs	spacing. See spacing of reinforcements
definition of, 185	splicing of, 178–80
reinforcement detailing for, 192, 200	spread of, 31
reinforcement for, 192	retaining walls, xxxiv-xxxv, 311, 345-7, 353,
simplified analysis of, 190, 192	372
orthotropic slab, 187	
	serviceability design, 4, 7, 65, 81, 94, 97, 100,
passive earth pressure coefficient, 348	102, 111, 437
pile caps, 311, 339-40, 342-4	shear
plastic centre, 257-8, 275	critical section for, 302, 328, 331
Poisson's ratio for concrete, 15	failure modes, 125

shear (cont.)	stress-strain curves
inclined reinforcement for, 127, 133, 160	for concrete, 14, 20, 22
longitudinal, 14, 123, 138-9, 141, 157, 206	for steel, 17, 20
mechanism of resistance, 127	strut-and-tie modelling, 303, 377-9, 384-7, 392
reinforcement, 125, 127-9, 132-3, 139, 160,	
335, 371, 373, 387	T-beams
strength of beams, 130	criteria for, 66
stress formula, 123	definition of, 61
transverse, 141, 157-60, 326, 340, 344	doubly reinforced, 70-1
shear heads, 227–9, 233	effective flange width formulas for, 63, 69
shear planes, 138–41	tension failure
shrinkage	of beams, 23, 41, 80, 463
effects and reinforcement, 199, 209–10, 222,	of columns, 261, 264-5, 267, 280, 460
304, 317, 324, 372	thermal expansion of concrete coefficient, 15
of concrete, 15, 104, 107, 193, 416	thermal expansion of steel coefficient, 17
singly reinforced beams. See beams	torsion
slabs	cracks, 155
column strip, 217, 219, 223, 225, 242, 244-5,	maximum allowed in beams, 158
249	modulus, 158
design strips, 217-18	reinforcement, 155, 158, 160-1, 163, 230-1
middle strips, 217, 223, 225, 237, 242-3,	torsion strips
246–7	definition of, 229
minimum thickness for, 209	design of, 228-9
serviceability design of, 193, 209	minimum reinforcement for, 230
See also flat plates; flat slabs; multispan two-	reinforcement detailing for, 232
way slabs; one-way slabs; two-way slabs	twisting moments, 155, 188, 208
soil bearing capacity, 314, 325, 327, 357	two-way slabs
spacing of reinforcements	bending moments in, 201, 204, 206, 219,
and crack control, 192	224
maximum, 11, 210, 323	distribution of loads in, 206
minimum, 9, 192	edge conditions for, 202, 204
spalling stresses, 473, 476, 480	moment coefficients, 202
spandrel beams	reinforcement detailing for, 206
definition of, 231	simplified analysis of, 201
design of, 228, 231–2	supported on four sides, 186, 188-9, 201, 203,
minimum reinforcement for, 232	209
reinforcement detailing for, 232	
squash points, 262, 268	ultimate strain
steel ratios	of concrete, 20
for balanced beam sections, 24	of steel, 17, 20
maximum for beams, 25	ultimate strength
maximum for columns, 287	definition of, 19
minimum for beams, 35	theory, 19–20
minimum for columns, 287	ultimate stress blocks. See stress blocks
minimum for slabs, 204	unit weights, 18, 315, 328, 354, 359-60
stress blocks, 20-2, 26, 66, 69, 75, 139, 141, 164,	
309, 458, 476	vibrations, 94, 437

INDEX 501

walls

axial strength of, 298
capacity reduction factor for, 298
column design method for, 297–8, 301
definition of, 296
eccentricity parameter, 301
in one-way action, 298, 300
in two-way action, 298, 301
reinforcement, 299
shear strength of, 302
simplified method, 297–8, 305

slenderness ratios for, 299, 301 with openings, 299 web-beams, 67–70, 72, 74 welded mesh, 173, 179 wires, 81, 179, 434–6, 445, 458

yield criteria for reinforcement.

See criteria for yielding of reinforcement
yield line analysis, 189
yield strength of steel, 15, 140, 230