

REINFORCED AND PRESTRESSED CONCRETE

THIRD EDITION

The third edition of *Reinforced and Prestressed Concrete* continues to be the most comprehensive text for engineering students, instructors and practising engineers. Theoretical and practical aspects of analysis and design are presented in a clear, easy-to-follow manner and are complemented by numerous illustrative and design examples to aid students' comprehension of complex concepts. The text is divided into two parts: the first addresses the analysis and design of reinforced concrete structures and the second covers topics in prestressed concrete.

This edition has been fully updated to reflect recent amendments and addenda to the Australian Standard for Concrete Structures AS 3600–2009 and allied standards. Two new chapters, covering T-beams, irregular-shaped sections and continuous beams, and strut-and-tie modelling have been added as discrete modules to enhance the progression of topics. Additional information is provided on fire resistance, detailing including cover, long-term deflection and design for torsion. An expanded collection of end-of-chapter tutorial problems consolidate student learning and develop problem-solving skills.

With its thorough coverage of fundamental concepts and abundance of practical examples, *Reinforced and Prestressed Concrete* remains an indispensable resource for students and engineers continuing their professional development.

Yew-Chaye Loo AM, PhD, FIEAust, FICE, FIStructE, CPEng, NPER, CEng was the Foundation Professor of Civil Engineering at Griffith University in Queensland. A former Dean of Engineering and Information Technology and Internationalisation Director for Griffith Sciences Group, he is now a Professor Emeritus at the University.

Sanaul Huq Chowdhury, PhD, MIEAust, MACI, CPEng, NPER is a senior lecturer in Structural Engineering and Mechanics at the School of Engineering and Built Environment, Griffith University. He is a Chartered Professional Engineer and member of both the Civil and Structural Colleges of Engineers Australia.

REINFORCED AND PRESTRESSED CONCRETE THIRD EDITION

Yew-Chaye Loo AM Sanaul Huq Chowdhury

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108405645

First edition © Yew-Chaye Loo & Sanaul Huq Chowdhury 2010 Second and third editions © Cambridge University Press 2013, 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010 Second edition 2013 Third edition 2018

A catalogue record for this book is available from the National Library of Australia

ISBN 978-1-108-40564-5 Paperback

Additional resources for this publication at www.cambridge.edu.au/academic/concrete

Reproduction and communication for educational purposes

The Australian *Copyright Act 1968* (the Act) allows a maximum of one chapter or 10% of the pages of this work, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that the educational institution (or the body that administers it) has given a remuneration notice to Copyright Agency Limited (CAL) under the Act.

For details of the CAL licence for educational institutions contact:

Copyright Agency Limited Level 15, 233 Castlereagh Street Sydney NSW 2000 Telephone: (02) 9394 7600

Facsimile: (02) 9394 7601 E-mail: info@copyright.com.au

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In memory of our parents

Loo Khai Kee (1900–1989) Lau Ching (1902–1961) Shamsul Haque Chowdhury (1920–1999) Syeda Nurun Nahar Chowdhury (1930–2007)

CONTENTS

Preface to the first edition page Preface to the second edition Preface to the third edition									
					Acknowle	edge	ments	S	xxiv
					Notation				xxv
Acronym	s an	d abb	previations	xxxviii					
Part 1	F	Reinf	forced concrete	1					
· arc i				_					
	1		roduction	3					
		1.1	Historical notes	3					
		1.2	8 1	4					
		1.3		5					
			1.3.1 Strength design	5					
			1.3.2 Serviceability design	7					
		1 1	1.3.3 Application	7					
		1.4	Concrete cover and reinforcement spacing 1.4.1 Cover	7 7					
				9					
		1.5	1.4.2 Spacing	12					
		1.5	Summary	12					
	2	Des	ign properties of materials	13					
		2.1	Introduction	13					
		2.2	Concrete	13					
			2.2.1 Characteristic strengths	13					
			2.2.2 Standard strength grades	14					
			2.2.3 Initial modulus and other constants	14					
		2.3	Steel	15					
		2.4	Unit weight	18					
		2.5	Summary	18					
	3	Ana	alysis and design of rectangular beams for bending	19					
		3.1	Introduction	19					
		3.2	Definitions	19					
			3.2.1 Analysis	19					
			3.2.2 Design	19					
			3.2.3 Ultimate strength method	19					
		3.3	Ultimate strength theory	20					
			3.3.1 Basic assumptions	20					
			3.3.2 Actual and equivalent stress blocks	20					

viii CONTENTS

3.4	Ultimate strength of a singly reinforced rectangular section	22
	3.4.1 Tension, compression and balanced failure	22
	3.4.2 Balanced steel ratio	24
	3.4.3 Moment equation for tension failure	
	(under-reinforced sections)	25
	3.4.4 Moment equation for compression failure	
	(over-reinforced sections)	26
	3.4.5 Effective moment capacity	27
	3.4.6 Illustrative example for ultimate strength of	
	a singly reinforced rectangular section	28
	3.4.7 Spread of reinforcement	31
3.5	Design of singly reinforced rectangular sections	35
	3.5.1 Free design	35
	3.5.2 Restricted design	36
	3.5.3 Design example	37
3.6	Doubly reinforced rectangular sections	40
	3.6.1 Criteria for yielding of $A_{\rm sc}$ at failure	40
	3.6.2 Analysis formulas	41
	3.6.3 Illustrative examples	44
	3.6.4 Other cases	46
	3.6.5 Summary	50
3.7	Design of doubly reinforced sections	51
	3.7.1 Design procedure	51
	3.7.2 Illustrative example	53
3.8	Summary	55
3.9	Problems	56
T-b	eams and irregular-shaped sections	61
4.1	Introduction	61
4.2	T-beams and other flanged sections	61
	4.2.1 Definitions	61
	4.2.2 Effective flange width	61
	4.2.3 Criteria for T-beams	66
	4.2.4 Analysis	67
	4.2.5 Design procedure	68
	4.2.6 Doubly reinforced T-sections	70
	4.2.7 Illustrative examples	71
4.3	Nonstandard sections	74
	4.3.1 Analysis	74
	4.3.2 Illustrative examples	76

4

CONTENTS ix

	4.4	Continuous beams	81
	4.5	Detailing and cover	81
	4.6	Summary	81
	4.7	Problems	82
5	Defl	ection of beams and crack control	94
	5.1	Introduction	94
	5.2	Deflection formulas, effective span and deflection limits	95
		5.2.1 Formulas	95
		5.2.2 Effective span	96
		5.2.3 Limits	97
	5.3	Short-term (immediate) deflection	98
		5.3.1 Effects of cracking	98
		5.3.2 Branson's effective moment of inertia	99
		5.3.3 Load combinations	100
		5.3.4 Illustrative example	101
		5.3.5 Cantilever and continuous beams	102
	5.4	Long-term deflection	104
		5.4.1 General remarks	104
		5.4.2 The multiplier method	104
		5.4.3 Illustrative example	105
	5.5	Simplified procedure	106
		5.5.1 Minimum effective depth approach	106
		5.5.2 ACI code recommendation	107
	5.6	Total deflection under repeated loading	107
		5.6.1 Formulas	108
		5.6.2 Illustrative example	110
	5.7	Crack control	111
		5.7.1 General remarks	111
		5.7.2 Standard provisions	112
		5.7.3 Crack-width formulas and comparison of performances	114
	5.8	Summary	118
	5.9	Problems	118
6	Ulti	mate strength design for shear	123
	6.1	Introduction	123
	6.2	Transverse shear stress and shear failure	123
		6.2.1 Principal stresses	123
		6.2.2 Typical crack patterns and failure modes	125
		6.2.3 Mechanism of shear resistance	127
		6.2.4 Shear reinforcement	127
	6.3	Transverse shear design	128

x CONTENTS

		6.3.1 Definitions	128
		6.3.2 Design shear force and the capacity reduction factor	128
		6.3.3 Maximum capacity	129
		6.3.4 Shear strength of beams without shear reinforcement	130
		6.3.5 Shear strength checks and minimum reinforcement	131
		6.3.6 Design of shear reinforcement	132
		6.3.7 Detailing	134
		6.3.8 Design example	135
	6.4	Longitudinal shear	138
		6.4.1 Shear planes	138
		6.4.2 Design shear stress	139
		6.4.3 Shear stress capacity	140
		6.4.4 Shear plane reinforcement and detailing	141
		6.4.5 Design example	141
	6.5	Summary	143
	6.6	Problems	144
7	Ulti	mate strength design for torsion	155
	7.1	Introduction	155
		7.1.1 Origin and nature of torsion	155
		7.1.2 Torsional reinforcement	155
		7.1.3 Transverse reinforcement area and capacity reduction factor	157
	7.2	Maximum torsion	157
	7.3	Checks for reinforcement requirements	159
	7.4	Design for torsional reinforcement	159
		7.4.1 Design formula	159
		7.4.2 Design procedure	160
		7.4.3 Detailing	161
		7.4.4 Design example	162
	7.5	Summary	167
	7.6	Problems	167
8	Bon	d and stress development	171
	8.1	Introduction	171
		8.1.1 General remarks	171
		8.1.2 Anchorage bond and development length	171
		8.1.3 Mechanism of bond resistance	172
		8.1.4 Effects of bar position	173
	8.2	Design formulas for stress development	173
		8.2.1 Basic and refined development lengths for a bar in tension	173
		8.2.2 Standard hooks and cog	176

CONTENTS xi

		8.2.3 Deformed and plain bars in compression	177
		8.2.4 Bundled bars	178
	8.3	Splicing of reinforcement	178
		8.3.1 Bars in tension	178
		8.3.2 Bars in compression	179
		8.3.3 Bundled bars	179
		8.3.4 Mesh in tension	179
	8.4	Illustrative examples	180
		8.4.1 Example 1	180
		8.4.2 Example 2	181
	8.5	Summary	182
	8.6	Problems	182
9	Slat	os	185
	9.1	Introduction	185
		9.1.1 One-way slabs	185
		9.1.2 Two-way slabs	186
		9.1.3 Effects of concentrated load	188
		9.1.4 Moment redistribution	189
	9.2	One-way slabs	190
		9.2.1 Simplified method of analysis	190
		9.2.2 Reinforcement requirements	192
		9.2.3 Deflection check	193
		9.2.4 Design example	194
	9.3	Two-way slabs supported on four sides	201
		9.3.1 Simplified method of analysis	201
		9.3.2 Reinforcement requirements for bending	206
		9.3.3 Corner reinforcement	208
		9.3.4 Deflection check	209
		9.3.5 Crack control	210
		9.3.6 Design example	210
	9.4	Multispan two-way slabs	216
		9.4.1 General remarks	216
		9.4.2 Design strips	216
		9.4.3 Limitations of the simplified method of analysis	218
		9.4.4 Total moment and its distribution	218
		9.4.5 Punching shear	220
		9.4.6 Reinforcement requirements	221
		9.4.7 Shrinkage and temperature steel	222
	9.5	The idealised frame approach	222
		9.5.1 The idealised frame	222

xii CONTENTS

		9.5.2	Structural analysis	223	
		9.5.3	Distribution of moments	225	
9.6		Punch	Punching shear design		
		9.6.1	Geometry and definitions	226	
		9.6.2	Drop panel and shear head	227	
		9.6.3	The basic strength	227	
		9.6.4	The ultimate strength	228	
		9.6.5	Minimum effective slab thickness	228	
		9.6.6	Design of torsion strips	229	
		9.6.7	Design of spandrel beams	231	
		9.6.8	Detailing of reinforcement	232	
		9.6.9	Summary	232	
		9.6.10	Illustrative example	233	
		9.6.11	Semi-empirical approach and layered finite		
			element method	235	
	9.7		esign for multistorey flat plate structures	236	
			Details and idealisation of a three-storey building	236	
		9.7.2	Loading details	237	
		9.7.3	Load combinations	238	
		9.7.4	Material and other specifications	238	
		9.7.5	Structural analysis and moment envelopes	239	
		9.7.6	Design strips and design moments	242	
		9.7.7	Design of column and middle strips	243	
		9.7.8	Serviceability check – total deflection	248	
		9.7.9	Reinforcement detailing and layout	249	
		9.7.10	Comments	249	
	9.8	Summ	•	250	
	9.9	Proble	ms	251	
10	Co	lumns		255	
	10.	1 Intro	oduction	255	
	10.	2 Cen	trally loaded columns	257	
	10.	3 Colu	umns in uniaxial bending	258	
		10.3	3.1 Strength formulas	258	
		10.3	3.2 Tension, compression, decompression and		
			balanced failure	260	
		10.3	3.3 Interaction diagram	262	
		10.3	3.4 Approximate analysis of columns failing in		
			compression	267	
		10.3	3.5 Strengths between decompression and squash points	268	

CONTENTS xiii

	10.4	Analysis of columns with an arbitrary cross-section	269
		10.4.1 Iterative approach	269
		10.4.2 Illustrative example of iterative approach	271
		10.4.3 Semi-graphical method	275
		10.4.4 Illustrative example of semi-graphical method	276
	10.5	Capacity reduction factor	279
	10.6	Preliminary design procedure	280
		10.6.1 Design steps	280
		10.6.2 Illustrative example	281
	10.7	Short column requirements	281
	10.8	Moment magnifiers for slender columns	282
		10.8.1 Braced columns	283
		10.8.2 Unbraced columns	284
	10.9	Biaxial bending effects	285
	10.10	Reinforcement requirements	287
		10.10.1 Limitations and bundled bars	287
		10.10.2 Lateral restraint and core confinement	287
		10.10.3 Recommendations	288
	10.11	Comments	288
	10.12	Summary	290
	10.13	Problems	290
11	Walls	5	296
	11.1	Introduction	296
	11.2	Standard provisions	297
	11.3	Walls under vertical loading only	298
		11.3.1 Simplified method	298
		11.3.2 American Concrete Institute code provision	299
		11.3.3 New design formula	300
		11.3.4 Alternative column design method	301
	11.4	Walls subjected to in-plane horizontal forces	302
		11.4.1 General requirements	302
		11.4.2 Design strength in shear	302
		11.4.3 American Concrete Institute recommendations	303
	11.5	Reinforcement requirements	303
	11.6	Illustrative examples	304
		11.6.1 Example 1 – load-bearing wall	304
		11.6.2 Example 2 – tilt-up panel	306
		11.6.3 Example 3 – the new strength formula	307
		11.6.4 Example 4 – design shear strength	308
	11.7	Summary	200
	11./	Summary	309
	11.7	Problems	309

xiv CONTENTS

12	Footi	ings, pile caps and retaining walls	311
	12.1	Introduction	311
	12.2	Wall footings	311
		12.2.1 General remarks	311
		12.2.2 Eccentric loading	314
		12.2.3 Concentric loading	317
		12.2.4 Asymmetrical footings	318
		12.2.5 Design example	318
	12.3	Column footings	325
		12.3.1 General remarks	325
		12.3.2 Centrally loaded square footings	325
		12.3.3 Eccentric loading	327
		12.3.4 Multiple columns	330
		12.3.5 Biaxial bending	331
		12.3.6 Reinforcement requirements	332
		12.3.7 Design example	332
	12.4	Pile caps	339
		12.4.1 Concentric column loading	339
		12.4.2 Biaxial bending	344
	12.5	Retaining walls	345
		12.5.1 General remarks	345
		12.5.2 Stability considerations	348
		12.5.3 Active earth pressure	353
		12.5.4 Design subsoil pressures	355
		12.5.5 Design moments and shear forces	357
		12.5.6 Load combinations	359
		12.5.7 Illustrative example	359
	12.6	Summary	373
	12.7	Problems	373
13	Strut	t-and-tie modelling of concrete structures	377
	13.1	Introduction	377
	13.2	Fundamentals	378
	13.3	Struts, ties and nodes	380
	13.4	Common types of strut-and-tie models	383
	13.5	Developments	384
	13.6	Specifications in AS 3600	387
		13.6.1 Concrete struts	388
		13.6.2 Steel ties	391
		13.6.3 Nodes	392

CONTENTS xv

			13.6.4 Additional specifications	392
			13.6.5 Illustrative example	392
		13.7	Summary	400
Part 2	Pr	estre	ssed concrete	401
	14	Intro	duction to prestressed concrete	403
		14.1	Introduction	403
		14.2	Non-engineering examples of prestressing	404
			14.2.1 Wooden barrel	404
			14.2.2 Stack of books	404
		14.3	Principle of superposition	405
		14.4	Types of prestressing	407
			14.4.1 Pretensioning	408
			14.4.2 Post-tensioning	408
		14.5	Partial prestressing	409
		14.6	Tensile strength of tendons and cables	411
		14.7	Australian Standard precast prestressed concrete	
			bridge girder sections	413
		14.8	Summary	413
	15	Critic	cal stress state analysis of beams	414
		15.1	Introduction	414
		15.2	Notation	414
		15.3	Loss of prestress	416
			15.3.1 Standard provisions	416
			15.3.2 Examples of prestress loss due to elastic shortening	
			of concrete	417
			15.3.3 Effective prestress coefficient	420
			15.3.4 Stress equations at transfer and after loss	420
		15.4	Permissible stresses c and c_t	421
		15.5	Maximum and minimum external moments	422
		15.6	Case A and Case B prestressing	425
			15.6.1 Fundamentals	425
			15.6.2 Applying Case A and Case B	426
		15.7	Critical stress state (CSS) equations	427
			15.7.1 Case A prestressing	427
			15.7.2 Case B prestressing	429
			15.7.3 Summary of Case A and Case B equations	430
		15.8	Application of CSS equations	431
		15.9	Summary	433
		15.10	Problems	434

xvi CONTENTS

16	Criti	cal stress state design of beams	437
	16.1	Introduction	437
	16.2	Formulas and procedures – Case A	438
		16.2.1 Elastic section moduli	438
		16.2.2 Magnel's plot for Case A	439
		16.2.3 Design steps	440
	16.3		441
		16.3.1 Elastic section moduli	441
		16.3.2 Magnel's plot for Case B	442
		16.3.3 Design steps	442
	16.4	Design examples	442
		16.4.1 Simply supported beam	442
		16.4.2 Simple beam with overhang	446
		16.4.3 Cantilever beam	451
	16.5	Summary	456
	16.6	Problems	457
17	Ultin	nate strength analysis of beams	458
	17.1	Introduction	458
	17.2	Cracking moment (M_{cr})	459
		17.2.1 Formula	459
		17.2.2 Illustrative example	459
	17.3	Ultimate moment (M_u) for partially prestressed sections	460
		17.3.1 General equations	460
		17.3.2 Sections with bonded tendons	461
		17.3.3 Sections with unbonded tendons	462
	17.4	Ductility requirements – reduced ultimate moment equations	463
	17.5	Design procedure	464
		17.5.1 Recommended steps	464
		17.5.2 Illustrative example	464
	17.6	Nonrectangular sections	466
		17.6.1 Ultimate moment equations	466
		17.6.2 Illustrative example	467
	17.7	Summary	469
	17.8	Problems	469
18	End	blocks for prestressing anchorages	473
	18.1	Introduction	473
	18.2	Pretensioned beams	473
	18.3	Post-tensioned beams	475
		18.3.1 Bursting stress	475
		18.3.2 Spalling stress	476

CONTENTS xvii

		18.3.3 Bearing stress	477
		18.3.4 End blocks	477
	18.4	End-block design	477
		18.4.1 Geometry	477
		18.4.2 Symmetrical prisms and design bursting forces	477
		18.4.3 Design spalling force	478
		18.4.4 Design for bearing stress	480
	18.5	Reinforcement and distribution	480
	18.6	Crack control	481
	18.7	Summary	482
Appendix A	Elast	tic neutral axis	483
Appendix B	Criti	cal shear perimeter	485
Appendix C	Austi	ralian Standard precast prestressed concrete bridge	
	girde	er sections	487
References	-		489
Index			496

PREFACE TO THE FIRST EDITION

Most of the contents of this book were originally developed in the late 1980s at the University of Wollongong, New South Wales. The contents were targeted towards third-year courses in reinforced and prestressed concrete structures. The book was believed useful for both students learning the subjects and practising engineers wishing to apply with confidence the then newly published Australian Standard AS 3600–1988. In 1995 and following the publication of AS 3600–1994, the contents were updated at Griffith University (Gold Coast campus) and used as the learning and teaching material for the third-year course, 'Concrete structures' (which also covers prestressed concrete). In 2002, further revisions were made to include the technical advances of AS 3600–2001. Some of the book's more advanced topics were used for part of the Griffith University postgraduate course, 'Advanced reinforced concrete'.

In anticipation of the publication of the current version of AS 3600, which was scheduled for 2007, a major rewrite began early that year to expand on the contents and present them in two parts. The effort continued into 2009, introducing in Part 1 'Reinforced concrete', inter alia, the new chapters on walls, as well as on footings, pile caps and retaining walls, plus an appendix on strut-and-tie modelling. In addition, a new Part 2 had been written, which covered five new chapters on prestressed concrete. The entire manuscript was then thoroughly reviewed and revised as appropriate following the publication of AS 3600–2009 in late December 2009.

In line with the original aims, the book contains extensive fundamental materials for learning and teaching purposes. It is also useful for practising engineers, especially those wishing to have a full grasp of the new AS 3600–2009. This is important, as the 2009 contents have been updated and expanded significantly and, for the first time, provisions for concrete compressive strength up to 100 MPa are included. The increase in concrete strength has resulted in major changes to many of the analysis and design equations.

Part 1 contains 11 chapters. An introduction to the design requirements and load combinations is given in Chapter 1, and the properties of and specifications for concrete and reinforcing steel are discussed in Chapter 2. Chapter 3 presents, in detail, the bending analysis and design of rectangular beams, T-beams and other flanged sections. Some significant attention is given to doubly reinforced members. Deflection and crack control are considered in Chapter 4, which also features a section on the effects of repeated loading. Also presented is a unified crack-width formula for reinforced and prestressed beams.

Chapter 5 details transverse and longitudinal shear design, and Chapter 6 presents the design procedure for torsion. Bond and stress development are treated in Chapter 7, and Chapter 8 covers most of the practical aspects of slab analysis and design. It also includes a separate section describing a design exercise that features the complete (multiple-load case) analysis of a three-storey flat plate structure, as well as the detailed design of typical floor panels.

Chapter 9 deals with the analysis and design of columns, including the treatment of arbitrary cross-sections using numerical and semi-graphical methods. The new Chapter 10

xx PREFACE TO THE FIRST EDITION

examines the use of relevant strength design formulas for walls subjected to vertical axial loads, as well as under combined axial and horizontal in-plane shear forces. This is followed by the new Chapter 11, with an extensive and in-depth coverage of the design of wall and column footings, pile caps and retaining walls.

Part 2 contains five chapters. Prestressed concrete fundamentals, including pre- and post-tensioning processes, are introduced in Chapter 12. Chapters 13 and 14 cover the critical stress state approach to the analysis and design of fully prestressed concrete flexural members, which ensures a crack-free and overstress-free service life for those members. The ultimate strength analysis and design of fully and partially prestressed beams are dealt with in Chapter 15. The final chapter (Chapter 16) presents the design of end blocks for prestressing anchorages.

Appendices A and B present the formulas for computing the elastic neutral axes required in deflection analysis, and those for obtaining various critical punching shear perimeters used in flat plate design, respectively. The development of an integrated personal computer program package for the design of multistorey flat plate systems is described in Appendix C. This may be useful to the reader who has an interest in computer applications. Appendix D highlights the essence of the strut-and-tie modelling approach; it also reviews the advances made in this topic in recent years. Finally, the Australian Standard precast I-girders and super T-girders for prestressed concrete bridge construction are detailed in Appendix E.

In all of the chapters and appendixes, the major symbols used in AS 3600–2009 are adopted. Unless otherwise specified, the term 'Standard' refers to AS 3600–2009 and all the clause numbers referred to in the text are those from AS 3600–2009. For ease of reading, a full notation is provided as well as a subject index.

For the student learning the subject of reinforced and prestressed concrete, sufficient fundamentals and background information are provided in each of the chapters. Most of the analysis and design equations are derived and presented in an explicit form. The practitioner of concrete engineering should find these equations easy to apply in their work. Illustrative and design examples are given throughout to assist the reader with the learning process and with their interpretation of the provisions of the Standard. For the convenience of students and teachers alike, a collection of tutorial problems is included at the end of each relevant chapter. To assist teachers using the book for concrete engineering-related courses, an electronic solution manual is available and posted on a secure website (maintained and continuously updated by the authors).

The book is suitable for use in a university degree course that covers the analysis and design of reinforced and prestressed concrete structures. Selected topics may also be adopted in a postgraduate course in concrete engineering. The practising engineer wanting to apply the Australian Standard with confidence will also find the material helpful. In practice, the book can also serve as a reference manual for and user guide to AS 3600–2009.

Yew-Chaye Loo Sanaul Huq Chowdhury

PREFACE TO THE SECOND EDITION

The second edition retains all of the features of the original book on the explicit and implicit advice of our peers via the mandatory Cambridge University Press review process. To limit the volume size, the old Appendix C, 'Development of an integrated package for design of reinforced concrete flat plates on personal computer', has been removed, being of diminishing practical importance. To enhance the contents, new and important materials are added, some of which were also on the advice of the reviewers:

- updated tables and figures to reflect the amendments and addenda to AS 3600–2009 promulgated by Standards Australia International since its first publication
- additional information on fire design, detailing and cover, long-term deflection, as well as aspects of partially prestressed concrete design; and
- an expanded Appendix on strut-and-tie modelling, encompassing the latest publications on the topic plus a numerical example.

Just as significant, another 37 tutorial problems have been added to the various chapters of the book. This makes a total of 108.

YCL SHC

PREFACE TO THE THIRD EDITION

This latest edition of the book is written in response to the domestic and international market needs as well as on the request of the publisher, Cambridge University Press. It retains the features of the original book but to enhance readability, every chapter now begins with an introduction and concludes with a summary, followed if applicable by an enlarged set of tutorial problems. In all 20 new problems are added making a grand total of 128.

The original Chapter 3 on bending analysis and design was judged by some peer-reviewers as being unduly lengthy. It is now split into two consecutive chapters. Based on a previous appendix, a new Chapter 13 on strut-and-tie modelling is added incorporating the latest material on the subject. Since the last edition, many significant amendments have been made and addenda added to the Australian Standard AS 3600–2009. These are incorporated in the current edition in the form of new and updated tables and figures. Also included are the latest information and recommendations on fire resistance, detailing including cover, long-term deflection, as well as torsion design.

YCL SHC

xxiii

ACKNOWLEDGEMENTS

Peer review was a mandatory process prior to the publication of this latest edition of the book. It was patiently and professionally handled initially by Ms Emily Thomas and then by Ms Tanya Bastrakova, Development Editor (Academic Publishing) at Cambridge University Press, Australia. Both were under the direction of Ms Lucy Russell, Cambridge's Senior Commissioning Editor, Academic. Under the direction of Ms Jodie Fitzsimmons, Managing Editor, Academic, Cambridge University Press, the final copy editing was done by Ms Karen Jayne, the responsible editor. The authors are grateful for their kind efforts, without which the book would have taken longer to appear. To the 14 unnamed reviewers from academia and the profession, the authors wish to express their sincere thanks and appreciation for their support and constructive suggestions. Their contributions have helped enrich the contents of the book.

The contents of the Australian Standard AS 3600–2009 and allied Standards are extensively quoted in this book. The authors are grateful to SAI Global for the permission to reproduce some of the updated design data in tabulated form and in figures.

NOTATION

A	gross cross-sectional area of a member
A_{b}	cross-sectional area of a reinforcing bar
$A_{ m c}$	cross-sectional area of concrete only in a reinforced concrete section
$A_{ m cc}$	area of additional reinforcement provided for crack control at side faces of beams with $D > 750 \ \mathrm{mm}$
$A_{ m g}$	gross cross-sectional area of a member
$A_{ m m}$	an area enclosed by the median lines of the walls of a single cell
A_{p}	cross-sectional area of prestressing steel
$A_{ m pt}$	cross-sectional area of the tendons in that zone, which will be tensile under ultimate load conditions
$A_{ m pt.ef}$	effective cross-sectional area of tendons
$A_{ m s}$	cross-sectional area of reinforcement
$A_{ m sc}$	cross-sectional area of compression reinforcement
$A_{ m sf}$	area of fully anchored shear reinforcement crossing the interface (shear plane)
$A_{ m st}$	cross-sectional area of tension reinforcement; the cross- sectional area of reinforcement in the zone that would be in tension under the design loads other than prestressing or axial loads
$A_{ m st.min}$	minimum cross-sectional area of reinforcement permitted in a beam in tension, or in a critical tensile zone of a beam or slab in flexure
$A_{ m sv}$	cross-sectional area of shear reinforcement
$A_{ m sv.min}$	cross-sectional area of minimum shear reinforcement
$A_{ m sw}$	cross-sectional area of the bar forming a closed tie
A_{t}	area of a polygon with vertices at the centre of longitudinal bars

at the corners of the cross-section

length

cross-sectional area of a transverse bar along the development

XXV

 $A_{\rm tr}$

xxvi NOTATION

$A_{ m tr.min}$	cross-sectional area of the minimum transverse reinforcement along the development length
A_1	a bearing area
A_2	largest area of the supporting surface that is geometrically similar to and concentric with A_1
a	distance; or the maximum nominal size of the aggregate; or depth of equivalent concrete stress block from the extreme compression fibre; or dimension of the critical shear perimeter measured parallel to the direction of $M^*_{\ v}$
$a_{\rm s}$	length of a span support
$a_{ m v}$	distance from the section at which shear is being considered to the face of the nearest support
b	width of a cross-section
b^*	overall width of the column head or drop panel, as applicable
b_{c}	width of the compression strut; or the smaller cross-sectional dimension of a rectangular column
$b_{ m ef}$	effective width of a compression face or flange of a member
$b_{ m f}$	width of the shear interface; or width of a footing
$b_{ m w}$	width of the web; or the minimum thickness of the wall of a hollow section
C	force resulting from compressive stresses
C	cover to reinforcing steel or tendons; or the permissible compressive stress
c_{d}	the smaller of the concrete covers to the deformed bar or half the clear distance to the next parallel
c_{t}	permissible tensile stress
D	overall depth of a cross-section in the plane of bending
D^*	overall depth of the column head or drop panel, as applicable
D_{b}	overall depth of a spandrel beam
$D_{\rm c}$	diameter of circular column or the smaller dimension of rectangular column
$D_{ m f}$	greater dimension or length of a footing

NOTATION xxvii

D_{s}	overall depth of a slab or drop panel
d	effective depth of a cross-section
$d_{\rm b}$	nominal diameter of a bar, wire or tendon
$d_{ m c}$	depth of a compression strut; or the distance from the extreme compressive fibre of the concrete to the centroid of compressive reinforcement
$d_{ m o}$	distance from the extreme compression fibre of the concrete to the centroid of the outermost layer of tensile reinforcement or tendons but for prestressed concrete members not less than $0.8D$
$d_{ m om}$	mean value of the shear effective depth ($d_{\rm o}$) averaged around the critical shear perimeter
$d_{ m p}$	distance from the extreme compressive fibre of the concrete to the centroid of the tendons in that zone, which will be tensile under ultimate strength conditions
$d_{ m pc}$	distance of the plastic centre of a column from the extreme compressive fibre
$E_{\rm c}$	mean value of the modulus of elasticity of concrete at 28 days
E_{d}	design action effect
$E_{\rm p}$	modulus of elasticity of tendons
E_{s}	modulus of elasticity of reinforcement
$E_{ m u}$	action effect due to ultimate earthquake load
e	eccentricity of axial force from a centroidal axis; or the base of Napierian logarithms
e_{B}	eccentricity of prestressing tendons or cables
e_{a}	additional eccentricity
$F_{ m BF}$	horizontal pressure resultant for a retaining wall due to backfills
$F_{ m SL}$	horizontal pressure resultant for a retaining wall due to surcharge load
F*c	absolute value of the design force in the compressive zone due to flexure
$F_{ m d}$	uniformly distributed design load, factored for strength or serviceability as appropriate

xxviii NOTATION

$F_{ m def}$	effective design service load per unit length or area, used in serviceability design
$F_{ m r}$	friction between retaining wall or footing base and soil
f	bending stress
$f_{ m b}$	bearing stress
$f_{\rm c}$	concrete strength under working stress condition
$f_{ m cB}$	extreme bottom fibre stress
$f_{ m c.cal}$	calculated compressive strength of concrete in a compression strut
$f_{\rm cm}$	mean value of cylinder strength
$f_{ m cmi}$	mean value of the in situ compressive strength of concrete at the relevant age
$f_{\rm cp}$	compressive strength of concrete at transfer
$f_{ m cs}$	maximum shrinkage-induced tensile stress on the uncracked section at the extreme fibre at which cracking occurs
$f_{ m cT}$	extreme top fibre stress
$f_{\rm cv}$	concrete shear strength
$f_{ m heel}$	subsoil pressure at the heel of a retaining wall
$f_{\rm p}$	tensile strength of tendons
$f_{\rm py}$	yield strength of tendons
$f_{ m s}$	maximum tensile stress permitted in the reinforcement immediately after the formation of a crack
$f_{ m sc}$	stress in the compression steel
$f_{ m si}$	serviceability limit stress in reinforcement
$f_{ m sy}$	yield strength of reinforcing steel
$f_{ m sy.f}$	yield strength of reinforcement used as fitments
f_{toe}	subsoil pressure at the toe of a retaining wall
f'_{c}	characteristic compressive (cylinder) strength of concrete at 28 days
f'_{cp}	minimum compressive strength of concrete at transfer
$f'_{\rm ct}$	characteristic principal tensile strength of concrete

NOTATION xxix

$f'_{ m ct.f}$	characteristic flexural tensile strength of concrete
G	action effect due to dead load
g	dead load, usually per unit length or area
$g_{ m p}$	permanent distributed load normal to the shear interface per unit length (N/mm)
Н	height of a retaining wall; or the prestressing force
$H_{ m w}$	overall height of a wall
$H_{ m we}$	effective height of a wall
$H_{ m wu}$	unsupported height of a wall
I	second moment of area of the uncracked concrete cross-section about the centroidal axis
$I_{\rm b}$	second moment of area of a beam
$I_{\rm c}$	second moment of area of a column
$I_{\rm cr}$	second moment of area of a cracked section with the reinforcement transformed to an equivalent area of concrete
$I_{ m ef}$	effective second moment of area
$I_{ m ef.max}$	maximum effective second moment of area
$I_{ m f}$	second moment of area of a flexural member
$I_{ m g}$	second moment of area, of the gross concrete cross-section about the centroidal axis
I_{rep}	equivalent moment of inertia at the Tth loading cycle
J_{t}	torsional modulus
K	factor that accounts for the position of the bars being anchored with respect to the transverse reinforcement
$K_{\rm a}$	active earth pressure coefficient
$K_{\rm p}$	passive earth pressure coefficient
k	coefficient, ratio or factor used with and without numerical subscripts
$k_{\rm A},k_{\rm B},k_{\rm C}$	factors for calculating ϕ for backfill materials which are functions of the angularity, grading and density of the backfill particles