Index

abdomen
examination, 49–51, 59–61
visceral trauma, 247–8

Aberdeen Area Infant Mortality Study (AAIMS), 198–9
abscesses, 102
accident and emergency (A&E) departments
accidental death, 41
acid-base disorders, 213
acute tubular necrosis, 219–20
acylcarnitine (AC) profiles
bile, 121
blood, 117–20
cultured fibroblasts, 122
adenoviruses, 224
adrenal glands, 51
adrenal haemorrhage, 221, 223, 248
agency policies and practices, improving, 78–9
alcohol consumption, maternal, 134
arousability and, 192–3
bed-sharing and, 150–1
brainstem 5-HT deficits and, 199–202
alveolarcapillary dysplasia, 231–2
ambulance service, 29
American Academy of Pediatrics (AAP), 149, 151
amino acid testing, 119–21
anion gap, 108, 112
anogenital injuries, 242–3
anterior chest wall, 58–9
anterior torso, musculoscutaneous dissection, 58–9
aortic stenosis/arteria, 226
arcuate nucleus, 96, 162, 203
arm chairs, cushioned, 137
arousal, 189–94
brainstem 5-HT mechanisms, 190–191
breastfed infants, 143
definition, 189
failure, 178, 180, 189, 193–4
inner-ear defects and, 164, 207–9
intermittent hypoxia and, 189–90
pontine Kölliker-Fuse nucleus, 162
response to hypoxia and hypercapnia, 178–80, 189
risk factors and, 191–3
secondary depression phase, 180
arrest, of suspects, 106
arrhythmogenic right ventricular cardiomyopathy (ARVC), 160
asphyxia, 236–7
arousal response, 189
cause of death classification, 41
causes of sleep-related, 236–7
parents’ perspective, 6
positional, 237
sleep-related, 236–7
asplenia, 219, 222
autopsy, 48–53
ancillary investigations, 51, 53
brain examination
brainstem, 96–7
hippocampus, 97
removal and fixation, 52, 95–6
clinico-pathological summary, 53
external examination, 48–9, 57–8
forensic (see joint pediatric/forensic autopsy),
histology samples, 49, 52
imaging findings, 89–93
initial incision, 49–50
instruments, 49
internal examination, 49–52
joint forensic/paediatric. See joint forensic/paediatric autopsy
microscopic examination, 53
minimally invasive, 71–3
molecular. See genetic testing
NAME recommendations, 39–40
parental consent, 12, 16, 95
parents’ perspective, 15, 46
pathologists performing, 21–22, 24, 48
release of body after, 22, 24
religion, 41
second post-mortem, 24
suspicious signs, 30
tissue retention, 22, 249–50
UK guidelines, 55
UK legal framework, 21–22
US legal framework, 40–1
autoresuscitation, 180, 189, 196
axonal injury, 96–7, 257–8
baby boxes, 138
Baby Friendly Hospital Initiative (BFHI), 142–3, 146
baby nests (baby pods), 138
back-to-sleep campaigns
bed-sharing (see also overlaying autopsy findings, 53
Bowden’s studies, 2
breastfed infants, 143, 151
fall in SIDS rates and, 149–50
hazardous interactions, 132, 134, 149–51
risk in nonhazardous situations, 150–1
risk-reduction strategies, 151–3
substance misuse and, 134, 149–50
bedside sleepers (side cars), 138
bereavement, 12
biochemical analysis
inherited metabolic disease, 119
poisoning, 106–9
tissue samples, 117–18
biological risk factors, 127–8
biopsy, targeted, 92
birth-related injuries
fractures, 245, 250

© in this web service Cambridge University Press
www.cambridge.org
contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268
© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268

© in this web service Cambridge University Press

Cambridge University Press
978-1-108-18598-1 — Investigation of Sudden Infant Death Syndrome
Edited by Marta C. Cohen, Irene B. Scheimberg, J. Bruce Beekwith, Fern R. Hauck

Index

contamination, microbiological, 100–4
coronary arteries
anomalous origin, 226
fibromuscular dysplasia, ...
3
final case discussion, UK, 86–7
finger-bone fractures, 245
first responders, 29, 43
FISH/QF-PCR, 164
Index
268
fluorescent in situ hybridisation (FISH) QF-PCR
FMO3 gene polymorphisms, 163
fontanelles, 48, 52, 57, 252
forensic autopsy, 24, 48, 55–69.
See also joint forensic/paediatric autopsy
forensic pathologist, 24, 55
forensic pathology, 235–59
fractures, 243–7. See also rib fractures;
skull fractures
abuse mimics, 246–7
ageing, 244
detection, 243–4
facial, 247–202
long bones, 245
post-mortem radiology, 89–90
frozen tissue samples, 53, 101
fructose intolerance, hereditary,
215–16
fructose-1,6-biphosphatase
deficiency, 216
funerals, 12
GABAergic neurons, 192–3
galactosaemia, 215–16
Garrow, L, 1
gas embolism, 90
gas chromatography mass spectrometry (GC-MS), 111–12
gassing
arousal response, 179–80
medullary 5-HT neurons, 196
neuromodulation, 182–3
SIDS pathogenesis, 180
gastric contents, sampling, 109
gastroenteritis, 225
gene sequencing, specific, 165
general practitioners, 11, 16
genetic testing
cardiac arrhythmias, 176
metabolic disease, 117, 119, 122
sample collection, 49, 53, 249
technologies, 164–6
genetics, 159–66
brainstem 5-HT changes, 162, 202
cardiac arrhythmias, 173–4
recurrent SIDS, 129–30
SIDS susceptibility, 159–64
genital injuries, 242–3

genitourinary system, examination, 51
genotyping, 165
gentamicin, intratympanic, 207–9
glucose, 207–9
glis, 207–9

gliosis, 207–9

glucose testing, 108, 121
glutaryl-CoA dehydrogenase
deficiency, 215
glycogen deposition, 121–2

glycogen storage diseases, 216
gram-negative bacilli, 104
grief, 13
complicated, 13
constructive, 13–14
factors impeding, 15
individual variations, 13
models of mourning, 13

group A streptococcus, 104, 219
group B streptococcus (GBS), 104, 219, 221
guilt, 13
gut microbiome, 203

Guthrie cards
ante-mortem newborn screening,
118–19, 123
blood acylcarnitine profiles, 118–19
blood amino acid profiles, 119–21
post-mortem samples, 108, 117, 119
haematomatous malignancies, 232–3
haemophagocytosis, 219, 222
Haemophilus influenzae, 219, 221
haemosiderosis, 237, 254–5
hair analysis, 109
head
external examination, 48, 57
internal examination, 51–2
shape and size abnormalities, 251–2

head injuries
cerebral venous and dural sinus
thrombosis, 255
scrap lesions, 250
skull fractures, 250–1
subcortical contusional tears, 256–7
subdural bleeding, 252–5
healthcare workers
home visit, 32, 45
support for parents, 12
Healthy People (HP) 2020 objective, 76
hearing defects, 164, 207

heart
examination, 50
microbiology, 100–101

heart rate
arousal response, 180
brainstem circuitry, 180–3

Haemophilus influenza, hematological malignancies,
hepatitis, fulminant, 102
hepatoblastoma, 231–2
hippocampus, 97
histiocytoid cardiomyopathy, 228–9
histochemistry, 121–2

histology samples
abdomen and thorax, 49
central nervous system, 52
inherited metabolic disease, 118
staining, 53

history of SIDS, 1–3

home visit, 46

importance, 2

neuropathological findings and, 95

home monitors, 15–16

care, 32, 45–6

who and when, 45–6

obtaining history, 46

homicide, 24

hookah, 132

hospital records, 32

5-HT (5-hydroxytryptamine). See serotonin

5-HT receptors
changes in SIDS, 197–9

prenatal adverse exposures and, 191

5-HT transporter (5-HTT)
changes in SIDS, 197–8, 200
gene polymorphisms, 162, 202

5-HT1A receptors
changes in SIDS, 198–9

nicotine interactions, 164

risk factor interactions, 199

5-HT1A receptors, 164, 197, 199

5-HT1F receptors, 197

3-hydroxy-3-methylglutaryl (HMG) CoA lyase deficiency, 214

hypercapnia
arctuate nucleus function, 162

arousal response, 179, 189

brainstem 5-HT mechanisms, 190–1

inner-ear defects and, 164, 207–8

hyperreflexia/extension injuries, neck, 66, 258

hypernatraemia, 111–12

hypertrophic cardiomyopathy (HCM), 160, 227, 229

hypoglycaemia, 121, 213–14

hydroplastic left heart ventricle, 226

hypostasis, 57–8

hypoxia
arousal response, 178–80, 189

brainstem 5-HT deficits and, 203

brainstem 5-HT mechanisms, 190–1

diving reflex, 208–9

habituation to intermittent, 189–90

inner-ear defects and, 164, 207–8

nicotine exposure and, 191–2

post-mortem MRI, 93

prenatal alcohol exposure and, 192–3

hypoxic-ischaemic brain injury, 97, 180, 259

identification, formal legal, 34–5, 40

Il-10 gene polymorphisms, 163

imaging, post-mortem, 89–93

inherited metabolic disease, 116

minimally invasive autopsy, 71–3

269

© in this web service Cambridge University Press
Index

<table>
<thead>
<tr>
<th>Imaging, post-mortem (cont.)</th>
<th>NAME guidelines, 39–40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-autopsy</td>
<td>Netherlands, 11</td>
</tr>
<tr>
<td>Immune dysfunction</td>
<td>police, 28–35</td>
</tr>
<tr>
<td>Immunodeficiency syndromes</td>
<td>role of child death reviews, 78</td>
</tr>
<tr>
<td>Inborn errors of metabolism</td>
<td>UK legal framework, 19–35</td>
</tr>
<tr>
<td>Inherited metabolic disease</td>
<td>US legal framework, 36–41</td>
</tr>
<tr>
<td>Infant and child death review</td>
<td>Investigation Questionnaire for Sudden Unexpected Deaths in Infants, 56</td>
</tr>
<tr>
<td>Infanticide</td>
<td>joint forensic/pediatric autopsy, 55–69</td>
</tr>
<tr>
<td>Infections</td>
<td>brain and spinal cord removal, 61–4</td>
</tr>
<tr>
<td>Microbiological diagnosis</td>
<td>cervical spine excision, 66–7</td>
</tr>
<tr>
<td>Post-mortem skin samples</td>
<td>decision to perform, 24, 48</td>
</tr>
<tr>
<td>Inferior olivary nucleus, gliosis</td>
<td>evisceration and special dissections, 58–69</td>
</tr>
<tr>
<td>Inflammation, breathing control and</td>
<td>external examination, 57–8</td>
</tr>
<tr>
<td>Inflicted injuries</td>
<td>eyes removal, 65–66</td>
</tr>
<tr>
<td>Inherited metabolic disease</td>
<td>facial dissection, 64–5</td>
</tr>
<tr>
<td>Causes of sudden death, 212</td>
<td>information on circumstances of death, 55–6</td>
</tr>
<tr>
<td>Clinical presentation, 212–16</td>
<td>information on death scene, 56</td>
</tr>
<tr>
<td>Investigations and analyses, 118–23</td>
<td>long bone removal, 69</td>
</tr>
<tr>
<td>Pathophysiology, 163, 211–16</td>
<td>pre-autopsy radiography, 56</td>
</tr>
<tr>
<td>Post-mortem investigation, 116–23</td>
<td>procuring trace evidence, 56</td>
</tr>
<tr>
<td>Samples, 116–19</td>
<td>rib cage removal, 66–7</td>
</tr>
<tr>
<td>Inner-ear abnormalities, 164, 207–9</td>
<td>jury, inquest, 25</td>
</tr>
<tr>
<td>Arousal failure, 164, 207–9</td>
<td>juvenile myelomonoctytic leukaemia, 232</td>
</tr>
<tr>
<td>Diving reflex and</td>
<td>karyotyping, 164</td>
</tr>
<tr>
<td>Inquest, 24–7, 35</td>
<td>KCNH2 gene mutations, 160, 172</td>
</tr>
<tr>
<td>Adjournment, 24</td>
<td>KCNQ1 gene mutations, 160, 172, 176</td>
</tr>
<tr>
<td>Article 2, 25–7</td>
<td>Kennedy Report, 55</td>
</tr>
<tr>
<td>Conclusions, 26–7, 35</td>
<td>ketone body production/utilisation defects, 214–15</td>
</tr>
<tr>
<td>Deciding on, 21, 23–4</td>
<td>3-ketothiolase deficiency, 214–15</td>
</tr>
<tr>
<td>History in US, 36–7</td>
<td>kidneys, 51, 100–1, 118</td>
</tr>
<tr>
<td>Opening the, 25</td>
<td>Kölliker-Fuse nucleus (KFN), 162</td>
</tr>
<tr>
<td>Inspiratory control</td>
<td>labial frenulum, lacerations, 57–8, 247</td>
</tr>
<tr>
<td>Brainstem circuitry, 180–3</td>
<td>lactate, blood, 108</td>
</tr>
<tr>
<td>Neuromodulation, 182–3</td>
<td>lactic acidosis, congenital, 212</td>
</tr>
<tr>
<td>Interested persons, 25</td>
<td>laryngeal chemoreflex, 97–8, 196</td>
</tr>
<tr>
<td>Interleukin 6 (IL-6), 163</td>
<td>laryngomalacia, 231</td>
</tr>
<tr>
<td>International normalised ratio (INR)</td>
<td>leptomeninges, 255</td>
</tr>
<tr>
<td>Interviews</td>
<td>lips, abrasions, 57, 247</td>
</tr>
<tr>
<td>Home visits, 46</td>
<td>liquid chromatography-mass spectrometry (LC-MS), 111–12</td>
</tr>
<tr>
<td>Police, 32–4</td>
<td>Liver</td>
</tr>
<tr>
<td>Intestines, examination, 50</td>
<td>external examination, 50–1</td>
</tr>
<tr>
<td>Intra-abdominal injuries, 247–8</td>
<td>samples, 100–1, 107, 109, 118–23</td>
</tr>
<tr>
<td>Intravascular bleeding, 98, 252</td>
<td>Liver disease, 213–14</td>
</tr>
<tr>
<td>Intravenous needle tracts, 90–2</td>
<td>Local Safeguarding Children Board (LSCB), 22–3, 31, 88</td>
</tr>
<tr>
<td>Investigation of sudden infant death</td>
<td>Long bones fractures, 245</td>
</tr>
<tr>
<td>Advocacy groups in US, 40</td>
<td>removal, 69</td>
</tr>
<tr>
<td>Child Fatality review board, 40</td>
<td>Long QT syndrome (LQTS), 160–1, 172–5, 229</td>
</tr>
<tr>
<td>Coroners, 19–27</td>
<td>Lullaby Trust, 3</td>
</tr>
<tr>
<td>Determining cause and manner of death, 40–1</td>
<td>Lungs</td>
</tr>
<tr>
<td>Final case discussion (UK), 86–7</td>
<td>examination, 50</td>
</tr>
<tr>
<td>First responders, 43</td>
<td>microbiology, 100–1, 104</td>
</tr>
<tr>
<td>Home visit, 32, 45–6</td>
<td>lysergic acid diethylamide, (H)-H-labelled (H-LSD), 197–8, 200</td>
</tr>
<tr>
<td>Medical examiner, 38–9</td>
<td>macrocephaly/macrocencephaly, 252</td>
</tr>
<tr>
<td>Magnesium, blood, 108</td>
<td>magnetic resonance imaging (MRI), 257</td>
</tr>
<tr>
<td>Medical treatment, deaths related to,</td>
<td>magnetic resonance imaging (MRI), 257</td>
</tr>
<tr>
<td>Medical treatment, deaths related to</td>
<td>magnetic resonance imaging (MRI), 257</td>
</tr>
<tr>
<td>Medical record, 31</td>
<td>Malaria, 102</td>
</tr>
<tr>
<td>Medical treatment, deaths related to,</td>
<td>manner of death, determination, 24,</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>26–7, 40–1</td>
</tr>
<tr>
<td>Medical examiners</td>
<td>Māori, New Zealand, 138, 152–3</td>
</tr>
<tr>
<td>UK, 20</td>
<td>mattresses, 137–8</td>
</tr>
<tr>
<td>US, 36–9</td>
<td>measurements, body, 48</td>
</tr>
<tr>
<td>Medical Records, 31</td>
<td>Medical Certificate as to Cause of Death (MCCD), 20</td>
</tr>
<tr>
<td>Medical treatment, deaths related to,</td>
<td>Mental examiners</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>UK, 20</td>
</tr>
<tr>
<td>Medical treatment, deaths related to,</td>
<td>US, 36–9</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>Medical Records, 31</td>
</tr>
<tr>
<td>Medical treatment, deaths related to,</td>
<td>Medical treatment, deaths related to,</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>21</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>medium-chain acyl-CoA dehydrogenase (MCAD)</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>deficiency</td>
</tr>
<tr>
<td>Medical treatment, deaths related to,</td>
<td>deficiency</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>clinical presentation, 163, 214</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>post-mortem diagnosis, 118, 120–1</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>medullary 5-HT system, 198–9, 97</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>See serotonin system, brainstem</td>
</tr>
<tr>
<td>Medium-chain acyl-CoA dehydrogenase (MCAD)</td>
<td>melanosis, congenital dermal, 241</td>
</tr>
<tr>
<td>Meningitis, bacterial, 219, 221–3</td>
<td>meningococci, 104, 219, 221–3</td>
</tr>
<tr>
<td>Meningitis, bacterial, 219, 221–3</td>
<td>meningococci (Neisseria meningitidis), 104, 219, 221–3</td>
</tr>
<tr>
<td>Meningitis, bacterial, 219, 221–3</td>
<td>meningococcal meningitis, 102</td>
</tr>
<tr>
<td>Metabolic bone disease, 246–7</td>
<td>metabolic bone disease, 246–7</td>
</tr>
<tr>
<td>Metabolic disorders, inherited</td>
<td>metabolic disorders, inherited</td>
</tr>
<tr>
<td>See inherited metabolic disease</td>
<td>metabolites, plasma, 121</td>
</tr>
<tr>
<td>Metabolites, plasma</td>
<td>metabolomics, 118</td>
</tr>
<tr>
<td>Metaphyseal fractures, 245–7</td>
<td>metaphyseal fractures, 245–7</td>
</tr>
<tr>
<td>Metatarsal fractures, 245</td>
<td>post-mortem skin samples, 117–18</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press www.cambridge.org
methadone poisoning, child deaths, 109–10

using mothers, SIDS risk, 134–5

methanol poisoning, 112

microbiology, post-mortem, 100–5

additional samples, 100, 102

interpretation, 100–4

minimal sampling protocol, 53, 101

microcephaly/microencephaly, 252

Middleton (R (Middleton) v West Somerset Coroner [2004]), 20, 26–7

mini-aroosals, 207, 209

minimally invasive autopsy, 71–3

minor illness, prior, 2

mitochondria, abnormal, 122

mitochondrial 2-methylacetoacetyl-CoA thiolase deficiency, 214–15

mitochondrial respiratory chain disorders, 122, 212

mitogenic cardiomyopathy, 228–9

molecular analysis

inherited metabolic disease, 117, 119, 122

pathogens, 101–2, 104–5

molecular autopsy. See genetic testing

Mongolian spot, 241

monoamine oxidase A (MAOA), 162, 197, 202

mortuary staff, 46

mourning. See grief

mouth

examination, 48, 57–8

injuries within, 247

multi-agency approach

Child Death Overview Panels, 87

child death reviews, 76–7

final case discussion, 86–7

infant death investigation, 31

multiple carboxyhaemoglobin deficiency, 215

multiple system atrophy, 182

muscle biopsy, 96, 108, 118–19, 122

Mycobacterium tuberculosis, 104

myelitis, 102

myocarditis
eosinophilic, 225–6

tissue samples, 102

viral, 223–4

myositis, diaphragmatic, 230, 232

National Association of Medical Examiners (NAME), 1, 37, 39–40

National Center for Fatality Review and Prevention (NCFRP), 77–8, 80, 83

National Cot Death Study Group (LWW) (Netherlands), 11

natural deaths, 41

neck examination, 48–50

hyperflexion/extension injuries, 66, 258

layered dissection, 58–60

negative feelings/perceptions, 6

neglect, 237–9. See also child abuse

contributory, 26–7

pathologists’ role, 238

starvation, 248–9

Neisseria meningitidis (meningococcus), 104, 219, 221–3

Netherlands, 9–16

neurological deterioration, metabolic disease, 213

neuromodulation, 182–3

neuromuscular disease, 232

neuropathology, 95–8, 249–59

New Zealand, 158, 152–3

newborn screening

hearing tests, 207

metabolic disorders, 211

stored Guthrie cards, 118–19, 123

next-generation sequencing (NGS), 165–6, 176

gene panels, 165–6

nicotine. See also smoking

alternative delivery systems, 132

arousal response and, 191–2

metabolism, genetic variations, 163–4

prenatal and postnatal exposure, 131–3

replacement therapy, 133

NODOK procedure, 11–12

non-accidental injury. See child abuse

Noonan syndrome, 227, 229

noradrenergic brainstem nuclei, 228

Norris, Charles, 37

NOS1AP gene variants, 161

nose, examination, 48

nucleus ambiguus (NA), 180

nucleus tractus solitarius (nTS), 181–2, 196

nurses, home visit, 45

obstetric risk factors, 127

oesophagus, examination, 50

oncocytic cardiomyopathy, 228–9

optic nerve sheath haemorrhages, 253–4

old, 254

orexin, 162

organ retention, 22, 249–50

organic acids, urinary, 121

organic acidurias, 212, 215

osmolar gap, 108

osteogenesis imperfecta, 241, 246

out-of-home settings, 82

overheating, 137, 139, 162

overlaying autopsy findings, 236–7

Bowden’s studies, 2

substance misuse and, 150

oxygen-conserving reflexes (OCR), 97–8, 208–9

pacifiers (dummies), 146–8

breastfeeding and, 143, 146–7

protective effects, 146–7

paediatric pathologists, specialist, 21–22, 55

paediatricians

emergency department, 32

home visit, 32, 45–6

pancreas, examination, 50–1

parabrahcal nucleus, 190–1

paracetamol, 106

parafacial respiratory group. See retrotrapezoid nucleus

parasitosis, systemic, 102

parents. See also carers; families

court, consent to autopsy, 12, 16, 95

collaboration with researchers, 9–11

evaluations, 12

explaining cause of death to, 41, 87

follow-up support, 14–15

home visit, 46

initial accounts, 31

initial care, 11–12

interview by police, 32

support, 9–14, 46

group, 7–8, 12, 40–1

taking statements from, 33–4

parvovirus B 19, 224

pathologists

briefing prior to autopsy, 21–2, 55–6

performing the autopsy, 21–2, 24, 48

responsibility in US, 5

role in child abuse/nuisance, 238

role in child abuse/neglect, 238

role in SIDS, 2

substance misuse and, 150

neuromuscular disease, 232

neuropathology, 95–8, 249–59

Netherlands, 9

parents. See also carers; families

court, consent to autopsy, 12, 16, 95

collaboration with researchers, 9–11

evaluations, 12

explaining cause of death to, 41, 87

follow-up support, 14–15

home visit, 46

initial accounts, 31

initial care, 11–12

interview by police, 32

support, 9–14, 46

group, 7–8, 12, 40–1

taking statements from, 33–4

parvovirus B 19, 224

pathologists

briefing prior to autopsy, 21–2, 55–6

performing the autopsy, 21–2, 24, 48

responsibility in US, 40–1

role in child abuse/neglect, 238

tissue retention, 22

patterned injuries, 240

pelvis, examination, 50–1

Pépí-Pod™, 138, 152–3

pericardial fluid sampling, 109

pericardium, 50

perinatal infections, 102

peripherally located cortical defects, 256

peritonitis, bacterial, 102, 222

periventricular leukomalacia, 256

pertussis (whooping cough), 219, 221

petechiae

face, neck and chest, 57–8, 237

intrathoracic, 209, 236
Index

Sudden Unexpected Infant Death Case Registry (SUID-CR), 82–3
sudden unexplained death in childhood (SUDC), 40
Sudden Unexplained Infant Death Investigation form, 39
SUDI. See sudden unexpected death in infancy
suffocation, accidental, 2, 78, 81–2
SUID. See sudden unexpected death in infancy
supine sleeping position, 136
support, 9–16, 46
support groups, parent, 7–8, 12, 40–1
suspicious deaths
autopsy findings, 30, 235–59
compassion for parents, 30–1
coroner’s perspective, 24
development of a major enquiry, 32–3
differential diagnosis, 238–9
forensic autopsy, 24, 48, 55
parents’ responses, 15
police response, 29–31
referral to police, 29
risk factors and signs, 30, 238–9
suture lines, cranial, 250
swabs, microbiological, 101–2
swaddling, 139–40
Swinscow, D., 1–3
synovial fluid samples, 109
syphilis, congenital, 102
temperature
ambient room, 139, 180
recordings, death scene, 30
thermoregulation, 162, 196
thoracic injuries, 244–5, 248
thorax. See chest
thymus, 49–50
tissue retention, 22, 249–50
tissue samples
general, 53, 108
inherited metabolic disease, 116, 118, 121–3
timing of collection, 116–17
toxicology, 107, 109
tobacco use. See also nicotine; smoking
alternative products, 132
prenatal and postnatal exposure, 131–3
tonsillitis, odontoidal, 221
total anomalous pulmonary venous return, 226

Touche (R v Inner N. London Coroner ex p Touche [2001]), 21
toxicological analysis, 106–14
chain-of-custody procedures, 106–7
sampling, 107–9
screening tests, 111–12
service provision (UK), 110–11
suspicious deaths, 249
toxoplamosis, 102
traceless impact, 253–4
tracheomalacia, 231
transposition of the great arteries, 226
triad (encephalopathy, subdural and retinal haemorrhages), 30, 235, 253–4
cerebral venous and dural sinus thrombosis, 255
delayed death and, 255
subdural bleeding, 253
trigeminoendarctic reflex, 97–8
triple-risk hypothesis, 159, 178
as basis for investigation, 43
Bowden’s research, 1
brainstem 5-HTI’ deficits, 202–3
prone sleeping position and, 136–7
role of inflammation, 183
TRPM4 (transient potential melastatin 4) gene mutations, 161
truncus arteriosus, 226
tryptophan, 191–2, 197
tryptophan hydroxylase 2 (TPH2), 197
brainstem levels, 190, 197–200
risk factor interactions, 199
tuberculosis, 102
tuberous sclerosis, 229
tumour necrosis factor-α (TNF-α), 163
tumours, 229, 232–3
ultrastructure, 121–2
unascertained (cause of death), 53
undetermined (cause of death)
child death review-based studies, 81–2
diagnostic shift to, 6, 78
parents’ perspective, 6
recommended use, 1, 41, 53
unexpected deaths, 20, 28
United Kingdom (UK)
bed-sharing, 152
Child Death Overview Panel. See Child Death Overview Panel
final case discussion, 86–7
home visit, 32, 45–6
legal investigation framework, 19–35
recent trends in SIDS/SUDI, 152
United States (US)
bed-sharing, 151–2
child death reviews, 75–83
coroners, 19, 36–9
legal investigation framework, 36–41
recent trends in SIDS/SUDI, 151–2
SUID Case Registry, 82–3
unnatural deaths, 20–1, 28, 41
urea cycle disorders, 119, 121, 212, 215
urine samples, 51, 108–9
collection, 51
drug screening, 111–12
inherited metabolic disease, 117, 119, 121
ventilation, room, 139
verdict, inquest, 26
vertebrae, 258
very-long-chain fatty acids (VLCFAs), 121
virology
molecular analyses, 104–5
samples, 53, 101–2
viral infections, 163, 223–5
visceral trauma, 247–8
vitamin C deficiency, 246
vitamin D deficiency, 227, 229, 246–7
vitreous humour samples, 107, 109, 117, 121
wahakura, 138, 152–3
water, fractional excretion, 112
Waterhouse Friedrichson syndrome, 226
Waterlow classification, 249
wedging, 237
Werne, J., 1
whole-exome sequencing (WES), 166
whole-genome sequencing (WGS), 166
whooping cough (pertussis), 219, 221
Williams syndrome, 232
witnesses, 25, 33–4
Worcestershire Coroner case (2013), 23
wormian bones, 250