CAMBRIDGE LIBRARY COLLECTION

Books of enduring scholarly value

Technology

The focus of this series is engineering, broadly construed. It covers technological innovation from a range of periods and cultures, but centres on the technological achievements of the industrial era in the West, particularly in the nineteenth century, as understood by their contemporaries. Infrastructure is one major focus, covering the building of railways and canals, bridges and tunnels, land drainage, the laying of submarine cables, and the construction of docks and lighthouses. Other key topics include developments in industrial and manufacturing fields such as mining technology, the production of iron and steel, the use of steam power, and chemical processes such as photography and textile dyes.

The Steam Engine

Thomas Tredgold (1788–1829) has been described as 'the most influential technical author of his generation and possibly of the nineteenth century'. His writings contributed greatly to the wider understanding of engineering, and it is his definition of civil engineering that the Institution of Civil Engineers wrote into their charter of 1828. Published in 1827, this work provides a historical survey and explanation of 'a masterpiece of human contrivance'. Tredgold breaks his subject down into ten sections, each covering areas such as the properties of steam, the differing means of harnessing its power, the history of the steam engine's invention and improvement, and the various applications of steam power. Containing many tables, formulae and line drawings, this thorough work complements Charles Frederick Partington's Historical and Descriptive Account of the Steam Engine (1822), which is also reissued in this series.
Cambridge University Press has long been a pioneer in the reissuing of out-of-print titles from its own backlist, producing digital reprints of books that are still sought after by scholars and students but could not be reprinted economically using traditional technology. The Cambridge Library Collection extends this activity to a wider range of books which are still of importance to researchers and professionals, either for the source material they contain, or as landmarks in the history of their academic discipline.

Drawing from the world-renowned collections in the Cambridge University Library and other partner libraries, and guided by the advice of experts in each subject area, Cambridge University Press is using state-of-the-art scanning machines in its own Printing House to capture the content of each book selected for inclusion. The files are processed to give a consistently clear, crisp image, and the books finished to the high quality standard for which the Press is recognised around the world. The latest print-on-demand technology ensures that the books will remain available indefinitely, and that orders for single or multiple copies can quickly be supplied.

The Cambridge Library Collection brings back to life books of enduring scholarly value (including out-of-copyright works originally issued by other publishers) across a wide range of disciplines in the humanities and social sciences and in science and technology.
The Steam Engine

Comprising an Account of its Invention and Progressive Improvement

Thomas Tredgold
This book reproduces the text of the original edition. The content and language reflect the beliefs, practices and terminology of their time, and have not been updated.

Cambridge University Press wishes to make clear that the book, unless originally published by Cambridge, is not being republished by, in association or collaboration with, or with the endorsement or approval of, the original publisher or its successors in title.
THE

STEAM ENGINE,

COMPRISING

AN ACCOUNT OF ITS INVENTION AND PROGRESSIVE IMPROVEMENT;

WITH AN

INVESTIGATION OF ITS PRINCIPLES,

AND THE

PROPORTIONS OF ITS PARTS FOR EFFICIENCY AND STRENGTH:

DETAILING ALSO ITS APPLICATION TO

NAVIGATION, MINING, IMPPELLING MACHINES, &c.

AND THE RESULTS COLLECTED IN

NUMEROUS TABLES FOR PRACTICAL USE.

ILLUSTRATED BY TWENTY PLATES, AND NUMEROUS WOOD CUTS.

BY THOMAS TREDGOLD,

CIVIL ENGINEER;

MEMBER OF THE INSTITUTION OF CIVIL ENGINEERS; AUTHOR OF ELEMENTARY PRINCIPLES OF
CARPENTRY; A PRACTICAL TREATISE ON THE STRENGTH OF IRON, &c.

"It is certain, that of all powers in nature, heat is the chief."—Bacon.
"The errors are not in the art, but in the artificers."—Newman.

LONDON:

PRINTED FOR J. TAYLOR,

AT THE ARCHITECTURAL LIBRARY, NO. 50, HIGH HOLBORN.

1827.
T. BARTLETT, Printer, Oxford.
TO

THOMAS HOBLYN, ESQ.

FELLOW OF THE ROYAL SOCIETY,

VICE PRESIDENT OF THE SOCIETY

FOR

THE ENCOURAGEMENT OF ARTS, MANUFACTURES, AND COMMERCE, &c. &c. &c

THE AUTHOR

INSPIRES

THIS WORK

DESCRIPTION OF

THE PRINCIPLES AND CONSTRUCTION OF THE

STEAM ENGINE;

WHICH, INVENTED AND PERFECTED BY THE ARTISTS OF BRITAIN, HAS RENDERED

HEAT AN INEXHAUSTIBLE SOURCE

OF

WEALTH AND PROSPERITY

TO THE

BRITISH EMPIRE.
PREFACE.

OF the various books published on that important and national subject the Steam Engine, there is not one in our own or any foreign language, which I consider as a fully satisfactory illustration of its principles; it is therefore only requisite for me to state this fact to render any apology unnecessary for the work I now offer to the notice of the Public. I have frequently and successfully claimed attention as an author; and in this case I hope to meet with equal success, and to shew by the labour and attention I have bestowed on this important subject, how highly I value the ostensible character I have acquired, and the extensive encouragement I have received.

It has been too common of late for mathematicians to complain of want of patronage, and to censure official authorities for not encouraging science, forgetting that research will always be estimated by its intermediate utility; and while they continue to confine their attention to abstract knowledge, while they do not devote a greater part of their time to its application to the wants and the welfare of society, they must be contented with a small share of those advantages which result from combining with practical skill, the power afforded by abstract reasoning. They should recollect that a Watt could have earned no fame, in an age nor in a country where the value of mecha-
PREFACE.

nical power was unknown. In following the application of science to art, I have not, however, I hope been unsuccessful in adding also to the stores of pure science; and, so far from being insensible to the value of abstract research, I wish it to be pursued with redoubled vigour by those who have spirit to break through the prejudices of existing systems, and study from nature: but it should be cultivated with a desire to promote the great end of human research, that is, the improvement of the condition of man; otherwise the fantasies of the Greek philosophers might with equal force claim the student’s regard.

I hope these remarks will tend to encourage those who pursue knowledge, whether with the energy of youth or the more steady enthusiasm of riper years; and as all nature, so all art, must ever be the result of those immutable proportions and laws of action which it has pleased our Creator to impress on matter, its objects are truly boundless. Our imperfection consists generally in not being able to foresee all the circumstances which have an influence on the effects of causes; but in proportion as we proceed in knowledge, we also acquire greater powers of perception: that which was at first difficult becomes easy, and the mind is often roused by the bright gleam of truth, breaking as it were accidentally upon a mass of obscure ideas, and rendering the true solution of the difficulty at once obvious; and as my gifted countryman Emerson has remarked, “the labour and fatigue of seeking after it instantly vanishes.”

I proceed now to give some idea of this work. It appears to be large for its object; but, though confined to a single source of power,
PREFACE.

that power is gigantic, and involves so many new and important doctrines in mechanical science and practice, that it was impossible in justice to comprise it in less space. The work is in Ten Sections.

In the First, the history of the progressive improvement of the steam engine is traced, from the period of its first suggestion by the Marquis of Worcester, to its present state of high perfection.

The Second Section presents an analysis of the nature of steam and of other species of vapour; the laws of their combination with heat, and of their elastic force, density, and comparative power; with the principles of calculating their velocity when in motion, loss of force by cooling, &c. In this section it is shewn that water is of all other known fluids that best adapted for producing steam.

The Third Section treats of the laws of combustion, and of the effect of different species of fuel in producing steam; the proportions of fire places and chimneys of boilers, and the precautions necessary for their security and effect: the nature and application of safety apparatus is fully discussed. The section closes with a developement of the principles of condensing steam.

In the Fourth Section, the power afforded by a given quantity of steam, and all the methods of developing it, are illustrated both in a popular and scientific manner; and the theoretical defect of the rotary action of steam is investigated. The various modes of applying the power of steam are shewn, with a classification of engines; and the velocity and proportions which give a maximum of effect in engines, as well as the nature and office, and the power lost in working the air pumps of engines, are investigated.
PREFACE.

The Fifth Section treats of the construction of the essentially different varieties of noncondensing steam engines; these engines are all of the high pressure kind, and the causes of loss of power, and means of employing steam to the best advantage, and the mode of calculating the power and proportion of the parts, are given in detail for each species.

The Sixth Section treats, in like manner, of the construction, proportions, power, and economy of condensing engines: in these sections, for the first time, those minute causes which affect the action of steam are not only stated, but are reduced to measure; and I trust in such a manner as to be most useful, both to those who wish to apply, and to those who wish to improve, the steam engine.

In the Seventh Section, the proportions and construction of the parts of steam engines are considered, as of cocks, valves, slides, pistons, stuffing boxes, &c.; also the modes of opening and closing valves, and the like, followed by a description of the different kinds of piston-rod guides, and an investigation of crank motions, and of the combinations for producing parallel motion. Also practical rules for the strength of the various parts of steam engines are added, and especially for boilers of different kinds.

The Eighth Section treats, First, of the modes of equalizing the action of the steam engine, as by fly wheels or counter weights. Secondly, of regulating the power of engines, as by valves, governors, regulators, &c. Thirdly, the method of ascertaining the state and intensity of the forces in engines, and the means of measuring their effective power. And, Fourthly, of the mode of working a steam engine.
PREFACE.

The Ninth Section illustrates the application of steam power, to raising water, to the drainage and business of mining, to impelling machinery for manufacturing and for agricultural purposes, and its application to land carriage by means of railways.

The Tenth Section is on steam navigation; and the stability of vessels, their resistance to motion in fluids, the means of propelling them, and the modes of proportioning the power to the effect, are investigations altogether new; and of necessity so, for the theory of the resistance of fluids hitherto taught in schools, is erroneous and cannot be applied. I have therefore endeavoured to explain the methods of my own researches in popular rather than strictly scientific discussions, reserving for a separate work the full development of my views on this important branch of science.

The tables will be useful in practice, and the plates are accompanied by descriptions, so as to render them of easy reference, and also to enable me to refer to the parts of the work which they tend to illustrate.

I am indebted to the friendly assistance of some of my professional brethren for access to information, which otherwise I could not have obtained: in a few instances, their favours arrived too late, except for my own satisfaction in finding that they conformed to the principles laid down in this treatise; of Mr. Bevan’s interesting experiments on the resistance of boats I have given only part, because the others were evidently affected by the limited section of the canal. One of the plates (XIII.) was furnished by Mr. White, Engineer, and a few of the others are selected from the very accurate plates drawn by Clement,
x.

PREFACE.

and published in Partington's History of the Steam Engine; the rest are engraved from my own drawings, and are aided by a great number of wood engravings on the pages.

My great object has been to lead the reader to study the principles of the steam engine, and to furnish him not only with materials for study, but also with methods of reasoning, and in sufficient variety to enable him to examine any new case likely to occur; and in proportion to the care and pains he bestows on the inquiry, he will feel the advantage of the few steps I have taken in this interesting and important subject.

I shall conclude in the language of Sir Isaac Newton, on a greater occasion, "I heartily beg that what I have here done may be read with candour, and that the defects I have been guilty of upon this difficult subject may not be so much reprehended as kindly supplied, and investigated by new endeavours of my readers."

16 Grove Place,
Lisson Grove, London.
August 13, 1827

THOMAS TREDGOLD.
CONTENTS.

INTRODUCTION

Article	**Page**
1	

Sect. I.—An Account of the Invention and Progressive Improvement of the Steam Engine

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1663</td>
<td>Marquis of Worcester</td>
</tr>
<tr>
<td>1683</td>
<td>Sir Samuel Morland</td>
</tr>
<tr>
<td>1695</td>
<td>Thomas Savery</td>
</tr>
<tr>
<td>1698</td>
<td>Dr. Denis Papin</td>
</tr>
<tr>
<td>1705</td>
<td>Thomas Newcomen</td>
</tr>
<tr>
<td>1718</td>
<td>Henry Beighton</td>
</tr>
<tr>
<td>1720</td>
<td>Leupold</td>
</tr>
<tr>
<td>1736</td>
<td>Jonathan Hulls</td>
</tr>
<tr>
<td>1739</td>
<td>Bernhard Belidor</td>
</tr>
<tr>
<td>1741</td>
<td>John Payne</td>
</tr>
<tr>
<td>1751</td>
<td>Francis Blake</td>
</tr>
<tr>
<td>1757</td>
<td>Kenee Fitzgerald</td>
</tr>
<tr>
<td>1758</td>
<td>William Emerson</td>
</tr>
<tr>
<td>1762</td>
<td>Dr. Joseph Black</td>
</tr>
<tr>
<td>1765</td>
<td>John Smeaton</td>
</tr>
<tr>
<td>1766</td>
<td>John Blakey</td>
</tr>
<tr>
<td>1769</td>
<td>James Watt</td>
</tr>
<tr>
<td>1781</td>
<td>Jonathan Hornblower</td>
</tr>
<tr>
<td>1782</td>
<td>Marquis De Jouffroy</td>
</tr>
<tr>
<td>1788</td>
<td>Patrick Miller</td>
</tr>
<tr>
<td>1790</td>
<td>Bettancourt</td>
</tr>
<tr>
<td>1790</td>
<td>R. Prony</td>
</tr>
<tr>
<td>1795</td>
<td>John Banks</td>
</tr>
<tr>
<td>1797</td>
<td>Dr. Edmund Cartwright</td>
</tr>
<tr>
<td>1797</td>
<td>John Curr</td>
</tr>
<tr>
<td>1799</td>
<td>Matthew Murray</td>
</tr>
<tr>
<td>1799</td>
<td>W. Murdoch</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>DATE</th>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1801</td>
<td>Dr. Robison</td>
<td>50</td>
</tr>
<tr>
<td>1801</td>
<td>Joseph Bramah</td>
<td>52</td>
</tr>
<tr>
<td>1801</td>
<td>John Dalton</td>
<td>54</td>
</tr>
<tr>
<td>1802</td>
<td>William Symington</td>
<td>55</td>
</tr>
<tr>
<td>1802</td>
<td>Trevithick and Vivian</td>
<td>56</td>
</tr>
<tr>
<td>1804</td>
<td>Arthur Woolf</td>
<td>57</td>
</tr>
<tr>
<td>1806</td>
<td>Oliver Evans</td>
<td>58</td>
</tr>
</tbody>
</table>

Of the equilibrium of heat... 65 47
Of the heat which converts water and other bodies into steam or
vapour.. 71—82 48

Of the elastic force of steam and vapours 83 56
Rules for the force of steam.. 88 59
Watt's experiments on salt water................................. 94 62
Watt's experiments on pure water............................... 95 63
Robison's experiments on pure water.......................... 96 64
Dalton's experiments on pure water........................... 97 64
Ure's experiments on pure water............................... 100 65
Southern's experiments on pure water......................... 102 68
Taylor's experiments on pure water........................... 104 71
Arberger's experiments on pure water......................... 105 72

Of the elastic force of the vapour of alcohol............... 106—108 75

--- Elastic force of the vapour of sulphuric ether........ 106—108 77
Cagniard de la Tour's experiments.............................. 107 78
Ure's and Dalton's experiments on ether..................... 108 79

--- Elastic force of sulphuret of carbon...................... 109 80

--- Elastic force of vapour of petroleum, oil of turpentine, oil gas.. 113 83

--- Elastic force of compressed gases......................... 115—117 84
Faraday's experiments.. 117 85

--- Elastic force of vapours separated from the liquids from
which they were generated... 118 86

--- Volume or bulk occupied by steam of a given elastic force 130 87

--- Mixture of air and vapour..................................... 122—126 89

--- General Roy's experiments.................................... 125 90
CONTENTS.

<table>
<thead>
<tr>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Of the Motion of elastic fluids and vapours</td>
<td>127—134</td>
</tr>
<tr>
<td>——— Motion of steam in an engine</td>
<td>135</td>
</tr>
<tr>
<td>——— Loss of force by cooling in steam pipes</td>
<td>145</td>
</tr>
<tr>
<td>——— Area of steam passages</td>
<td>150—154</td>
</tr>
<tr>
<td>——— Loss of force in the cylinder</td>
<td>155</td>
</tr>
<tr>
<td>In double engines</td>
<td>157</td>
</tr>
<tr>
<td>Single engines</td>
<td>160</td>
</tr>
<tr>
<td>Atmospheric engines</td>
<td>161—164</td>
</tr>
<tr>
<td>——— Temperature of condensation in atmospheric engines which gives the maximum effect</td>
<td>165</td>
</tr>
<tr>
<td>——— Ascent of smoke in chimneys</td>
<td>168—172</td>
</tr>
<tr>
<td>——— Escape of steam at safety valves</td>
<td>173—175</td>
</tr>
</tbody>
</table>

SECT. III.—OF THE GENERATION AND CONDENSATION OF STEAM AND THE APPARATUS FOR THOSE PURPOSES.

<table>
<thead>
<tr>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Of combustion and combustibles</td>
<td>177—196</td>
</tr>
<tr>
<td>Tables of the effect of different bodies as fuel</td>
<td>187—191</td>
</tr>
<tr>
<td>Process of combustion</td>
<td>192—196</td>
</tr>
<tr>
<td>Supply of air and area of fire grating</td>
<td>197—199</td>
</tr>
<tr>
<td>Of the surface of boiler to receive the effect of the fire</td>
<td>200—208</td>
</tr>
<tr>
<td>——— Space for steam and water in boilers</td>
<td>210—220</td>
</tr>
<tr>
<td>Space for water in boiler</td>
<td>217</td>
</tr>
<tr>
<td>——— Power of low pressure boilers</td>
<td>221</td>
</tr>
<tr>
<td>——— Form of boilers as it depends on effects</td>
<td>222—244</td>
</tr>
<tr>
<td>Watt's boilers</td>
<td>224</td>
</tr>
<tr>
<td>Cylindrical boilers</td>
<td>227</td>
</tr>
<tr>
<td>Count Rumford’s boilers</td>
<td>232</td>
</tr>
<tr>
<td>Woolf's boilers</td>
<td>233</td>
</tr>
<tr>
<td>Steam boat boilers</td>
<td>239</td>
</tr>
<tr>
<td>Portable high pressure boilers</td>
<td>244</td>
</tr>
<tr>
<td>Of Fire places</td>
<td>245—250</td>
</tr>
<tr>
<td>Watt’s fire place</td>
<td>246</td>
</tr>
<tr>
<td>Robertson’s furnace</td>
<td>247</td>
</tr>
<tr>
<td>Brunton’s fire place</td>
<td>250</td>
</tr>
<tr>
<td>— Apparatus for boilers</td>
<td>251</td>
</tr>
<tr>
<td>Feeding apparatus</td>
<td>ibid.</td>
</tr>
</tbody>
</table>

Of the power of steam, and the modes of obtaining it 290—301 156
By condensation 291—294 156
By generation 295, 296 157
By expansion 297—301 158
Of computing the power of steam to produce rectilinear motion 302—311 159
Of computing the power of steam to produce rotary motion 312—318 163
Modes of applying the power of steam 319—326 166
Classification of steam engines 323—326 168
Of the ratio between the length of the stroke, and the diameter of the cylinder 327—330 ibid.
——Maximum of useful effect in steam engines 331—343 170
——Maximum for engines equalized by a fly 332—338 171
——Maximum of useful effect in engines for raising water 339—343 173
——Proportions of air pumps and condensers for steam engines 344—352 174
Power required for working an air pump of a steam engine 353—355 177

Sect. V.—Of the Construction of Noncondensing Engines.

Definition and classification 356—360 181
First species 361—370 182
The proportions of parts 366 183
CONTENTS.

<table>
<thead>
<tr>
<th>Article</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Of the power of noncondensing engines working at full pressure</td>
<td>367—370</td>
</tr>
<tr>
<td>Noncondensing engines to work by expansion, or second species</td>
<td>371—380</td>
</tr>
<tr>
<td>Power of an expansive engine</td>
<td>377—380</td>
</tr>
<tr>
<td>Double cylinder expansive engine</td>
<td>381—383</td>
</tr>
<tr>
<td>Of the best force for the steam of noncondensing engines</td>
<td>384</td>
</tr>
</tbody>
</table>

SECT. VI.—Of the Construction of Condensing Engines.

General description and classification of condensing engines | 385—391 | 193 |
Of the construction of engines working by condensation | 392 | 195 |
Atmospheric engines | 393—405 | ibid. |
The common atmospheric engine | 393—399 | ibid. |
The proportions of the parts | 395 | 196 |
To determine the power of an atmospheric engine | 396—399 | 197 |
Atmospheric engines with a separate condenser | 400—405 | 198 |
Steam pressure engines | 406—410 | 200 |
Boulton and Watt's single engine | 406 | ibid. |
The proportions of the parts | 407 | 201 |
Rule for the power | 408—410 | 202 |
Single engines acting expansively | 411—413 | 203 |
Of the double engine of Boulton and Watt | 414—418 | 204 |
The proportions of the parts for a double engine acting with full pressure | 415 | 205 |
To determine the power of a double engine | 416—418 | 206 |
Double engine acting expansively | 419—423 | 207 |
Combined cylinder engines | 424—429 | 209 |
The double engine with combined cylinders | 425 | ibid. |
The proportions of combined engines | 426 | 210 |
The power of combined engines | 427—429 | ibid. |

SECT. VII.—Of the Proportions, and the Construction of the Parts of Steam Engines.

Of cocks and valves | 432—461 | 212 |
CONTENTS

<table>
<thead>
<tr>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General principles and arrangement</td>
<td>432–435</td>
</tr>
<tr>
<td>Rising valves</td>
<td>436–442</td>
</tr>
<tr>
<td>Hornblower's valve</td>
<td>441</td>
</tr>
<tr>
<td>Improved form for Hornblower's valve</td>
<td>442</td>
</tr>
<tr>
<td>Sliding valves</td>
<td>443–450</td>
</tr>
<tr>
<td></td>
<td>Brahah's slide valve</td>
</tr>
<tr>
<td></td>
<td>Murray's slide</td>
</tr>
<tr>
<td></td>
<td>Murdoch's slides</td>
</tr>
<tr>
<td>Rotary valves</td>
<td>451–461</td>
</tr>
<tr>
<td>Brahah's four way cock</td>
<td>457</td>
</tr>
<tr>
<td>Four way cock to cut off the steam at any portion of the stroke</td>
<td>458</td>
</tr>
<tr>
<td>Double passaged cocks</td>
<td>459</td>
</tr>
<tr>
<td>Plate or flat valves</td>
<td>466</td>
</tr>
<tr>
<td>Regulator</td>
<td>461</td>
</tr>
<tr>
<td>Of pistons</td>
<td>462–474</td>
</tr>
<tr>
<td>Wool's piston</td>
<td>468</td>
</tr>
<tr>
<td>Metallic pistons</td>
<td>469–473</td>
</tr>
<tr>
<td>Cartwright's piston</td>
<td>469</td>
</tr>
<tr>
<td>Barton's piston</td>
<td>470</td>
</tr>
<tr>
<td>Jessop's piston</td>
<td>473</td>
</tr>
<tr>
<td>Of the friction of pistons</td>
<td>474</td>
</tr>
<tr>
<td>Piston rod collars or stuffing boxes</td>
<td>475–477</td>
</tr>
<tr>
<td>Modes of opening valves, cocks, and slides</td>
<td>478–485</td>
</tr>
<tr>
<td>Piston guides</td>
<td>486–495</td>
</tr>
<tr>
<td>Cranks</td>
<td>487</td>
</tr>
<tr>
<td>Table of the variation of rotary force, when a crank is impelled by a constant force</td>
<td>239</td>
</tr>
<tr>
<td>Parallel motion</td>
<td>488–495</td>
</tr>
<tr>
<td>Of the strength of the parts of steam engines with practical rules</td>
<td>496–529</td>
</tr>
<tr>
<td>Strength of rods where the strain is wholly tensile</td>
<td>503</td>
</tr>
<tr>
<td>Strength of rods alternately extended and compressed</td>
<td>505–507</td>
</tr>
<tr>
<td>Strength of arms of beams, cranks, &c.</td>
<td>508</td>
</tr>
<tr>
<td>Beams</td>
<td>509</td>
</tr>
<tr>
<td>Cranks</td>
<td>510</td>
</tr>
<tr>
<td>Wheel arms</td>
<td>511</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Table of the strength, &c. of teeth and arms for wheel work</td>
<td>513</td>
</tr>
<tr>
<td>The strength of shafts</td>
<td>515</td>
</tr>
<tr>
<td>Of the strength of pipes and working cylinders</td>
<td>516–520</td>
</tr>
<tr>
<td>Of the strength of flat plates to bear the pressure of steam or other elastic fluids</td>
<td>521</td>
</tr>
<tr>
<td>Of the excess of strength to render boilers safe</td>
<td>522–523</td>
</tr>
<tr>
<td>Boilers formed of plates</td>
<td>524–527</td>
</tr>
<tr>
<td>Cast iron boilers</td>
<td>528–529</td>
</tr>
<tr>
<td>Of joining pipes and other parts of engines</td>
<td>530–533</td>
</tr>
</tbody>
</table>

Sect. VIII.—On Equalizing the Action, Regulating the Power, Measuring the Useful Effect, and Managing the Steam Engine.

<table>
<thead>
<tr>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Of equalizing the action of steam engines</td>
<td>535–541</td>
</tr>
<tr>
<td>Of the fly wheel</td>
<td>536</td>
</tr>
<tr>
<td>Case I. A double engine with a crank</td>
<td>540</td>
</tr>
<tr>
<td>Case II. A single engine</td>
<td>541</td>
</tr>
<tr>
<td>Counter weights</td>
<td>542</td>
</tr>
<tr>
<td>Of regulating the power of engines</td>
<td>543–556</td>
</tr>
<tr>
<td>The throttle valve</td>
<td>544</td>
</tr>
<tr>
<td>To regulate by working more or less by expansion</td>
<td>546</td>
</tr>
<tr>
<td>Field’s valve</td>
<td>547</td>
</tr>
<tr>
<td>Spring beams</td>
<td>549</td>
</tr>
<tr>
<td>The conical pendulum or governor</td>
<td>550</td>
</tr>
<tr>
<td>The regulator</td>
<td>554</td>
</tr>
<tr>
<td>The cataract</td>
<td>556</td>
</tr>
<tr>
<td>Of the methods of ascertaining the state and effective power of a steam engine</td>
<td>557–563</td>
</tr>
<tr>
<td>Steam gauge</td>
<td>558</td>
</tr>
<tr>
<td>Condenser gauge</td>
<td>559</td>
</tr>
<tr>
<td>The indicator</td>
<td>560–561</td>
</tr>
<tr>
<td>To measure the useful effect of an engine</td>
<td>562</td>
</tr>
<tr>
<td>The counter</td>
<td>563</td>
</tr>
<tr>
<td>Of working steam engines</td>
<td>564–568</td>
</tr>
<tr>
<td>Of working condensing engines</td>
<td>566</td>
</tr>
<tr>
<td>Of the management of the fire</td>
<td>567</td>
</tr>
</tbody>
</table>
CONTENTS.

<table>
<thead>
<tr>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECT. IX.—OF THE APPLICATION OF STEAM ENGINES TO DIFFERENT PURPOSES.</td>
<td></td>
</tr>
<tr>
<td>Of raising water</td>
<td>570—572</td>
</tr>
<tr>
<td>Of the drainage of mines</td>
<td>573—578</td>
</tr>
<tr>
<td>Extract from the reports of the cornish engines</td>
<td>576</td>
</tr>
<tr>
<td>Drawing ores &c.</td>
<td>579</td>
</tr>
<tr>
<td>Stamping engines</td>
<td>580</td>
</tr>
<tr>
<td>Water works</td>
<td>581</td>
</tr>
<tr>
<td>Of impelling machinery for manufacturing purposes</td>
<td>582—588</td>
</tr>
<tr>
<td>Iron manufactures, blowing machines</td>
<td>584</td>
</tr>
<tr>
<td>Cotton mills</td>
<td>585</td>
</tr>
<tr>
<td>Paper mills</td>
<td>586</td>
</tr>
<tr>
<td>Of impelling machinery for agricultural purposes</td>
<td>587—589</td>
</tr>
<tr>
<td>Thrashing machines</td>
<td>588</td>
</tr>
<tr>
<td>Corn mills</td>
<td>589</td>
</tr>
<tr>
<td>Of the application of steam power to impelling carriages</td>
<td>590—592</td>
</tr>
<tr>
<td>By fixed engines</td>
<td>591</td>
</tr>
<tr>
<td>To steam carriages</td>
<td>592</td>
</tr>
</tbody>
</table>

SECT. X.—OF STEAM NAVIGATION.		
Of the form of vessels for stability, speed, capacity and strength	594	299
Of the stability of vessels	595—610	*ibid.*
Longitudinal	598	*ibid.*
Lateral	599—610	300
| Of the resistance of vessels | 611—623 | 302 |
| --- | --- |
| Methods of propelling steam vessels | 624—642 | 309 |
| Spiral propeller or water screw | 626, 627 | 310 |
| Paddle wheels | 629—641 | 312 |
| Modifications of paddle wheels | 642 | 321 |
| --- | --- |
| Strength of vessels | 643 | 322 |
| --- | --- |
| Application of sails | 645 | *ibid.* |
| Rule for the power of boat engines | 650 | 324 |
| Of arranging the power for vessels | 652—656 | 325 |
CONTENTS.

<table>
<thead>
<tr>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables of steam vessels as executed</td>
<td>657–660</td>
</tr>
<tr>
<td>To ascertain the register tonnage</td>
<td>661</td>
</tr>
</tbody>
</table>

TABLES.

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table I</td>
<td>Of the properties of the steam of water of different degrees of elastic force</td>
<td>662</td>
</tr>
<tr>
<td>Table II</td>
<td>Of the proportions of single acting steam engines</td>
<td>663</td>
</tr>
<tr>
<td>Table III</td>
<td>Of the proportions of double acting steam engines</td>
<td>664</td>
</tr>
<tr>
<td></td>
<td>Explanation of the plates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
</tr>
</tbody>
</table>
MEASURES, WEIGHTS, &c. USED IN THIS WORK.

Temperature is measured by degrees of Fahrenheit's scale, of which the freezing point is 32°, and the boiling point 212°.

Heat is measured by the degrees the same quantity of heat would increase the temperature of a given quantity of water at 60°, with the barometer at 30 inches.

Mechanical power is measured by the elementary horse power, as settled by Mr. Watt.
A horse power is = 33,000 lbs. raised one foot high per minute, or = 550 lbs. raised one foot high per second; and a day's work of a horse is this power acting eight hours.

This horse power is, in French measures, 4661 kilogrammes raised one metre high per minute.

The pound is the avoirdupois pound, = 7000 grain, = 712.735 French kilogrammes.
The foot is = 0.3048 French metre.
An atmosphere is 30 inches of mercury = 762 French metres.