

CAMBRIDGE LIBRARY COLLECTION

Books of enduring scholarly value

Physical Sciences

From ancient times, humans have tried to understand the workings of the world around them. The roots of modern physical science go back to the very earliest mechanical devices such as levers and rollers, the mixing of paints and dyes, and the importance of the heavenly bodies in early religious observance and navigation. The physical sciences as we know them today began to emerge as independent academic subjects during the early modern period, in the work of Newton and other 'natural philosophers', and numerous sub-disciplines developed during the centuries that followed. This part of the Cambridge Library Collection is devoted to landmark publications in this area which will be of interest to historians of science concerned with individual scientists, particular discoveries, and advances in scientific method, or with the establishment and development of scientific institutions around the world.

Contributions to Molecular Physics in the Domain of Radiant Heat

Professor of natural philosophy for the Royal Institution between 1853 and 1887, the physicist John Tyndall (1820–93) passionately sought to share scientific understanding with the Victorian public. Reissued here is the collected research he contributed to the *Philosophical Transactions of the Royal Society* and other journals. Published in 1872, it complements Tyndall's *Heat Considered as a Mode of Motion* (1863), which is also reissued in this series. Here each memoir is preceded by a short summary, explaining what he discovered and his reasons for embarking on the investigations in question. Accompanying the detailed descriptions of experimental methods are illustrations of the scientific apparatus used. Tyndall also shows how his work built upon previous research, acknowledging the insights of distinguished scientists such as William Herschel and Macedonio Melloni. In particular, he discusses at length his academic debates with Heinrich Gustav Magnus.

Cambridge University Press has long been a pioneer in the reissuing of out-of-print titles from its own backlist, producing digital reprints of books that are still sought after by scholars and students but could not be reprinted economically using traditional technology. The Cambridge Library Collection extends this activity to a wider range of books which are still of importance to researchers and professionals, either for the source material they contain, or as landmarks in the history of their academic discipline.

Drawing from the world-renowned collections in the Cambridge University Library and other partner libraries, and guided by the advice of experts in each subject area, Cambridge University Press is using state-of-the-art scanning machines in its own Printing House to capture the content of each book selected for inclusion. The files are processed to give a consistently clear, crisp image, and the books finished to the high quality standard for which the Press is recognised around the world. The latest print-on-demand technology ensures that the books will remain available indefinitely, and that orders for single or multiple copies can quickly be supplied.

The Cambridge Library Collection brings back to life books of enduring scholarly value (including out-of-copyright works originally issued by other publishers) across a wide range of disciplines in the humanities and social sciences and in science and technology.

Contributions to Molecular Physics in the Domain of Radiant Heat

A Series of Memoirs Published in the 'Philosophical Transactions' and 'Philosophical Magazine', with Additions

JOHN TYNDALL

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge, CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge. It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

> www.cambridge.org Information on this title: www.cambridge.org/9781108067904

© in this compilation Cambridge University Press 2014

This edition first published 1872 This digitally printed version 2014

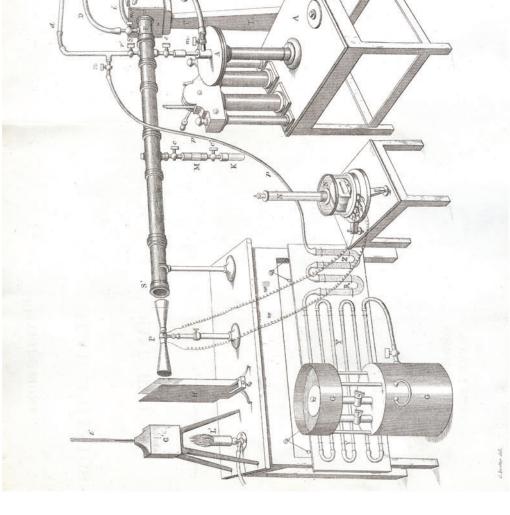
ISBN 978-1-108-06790-4 Paperback

This book reproduces the text of the original edition. The content and language reflect the beliefs, practices and terminology of their time, and have not been updated.

Cambridge University Press wishes to make clear that the book, unless originally published by Cambridge, is not being republished by, in association or collaboration with, or with the endorsement or approval of, the original publisher or its successors in title.

RADIANT HEAT

LONDON: PRINTED BY
SPOTTISWOODE AND CO., NEW-STREET SQUARE
AND PARLIAMENT STREET



More information

Cambridge University Press 978-1-108-06790-4 - Contributions to Molecular Physics in the Domain of Radiant Heat: A Series of Memoirs Published in the 'Philosophical Transactions' and 'Philosophical Magazine', with Additions John Tyndall Frontmatter

THOUSE IN THE PARTY OF THE PART

The material originally positioned here is too large for reproduction in this reissue. A PDF can be downloaded from the web address given on page iv of this book, by clicking on 'Resources Available'.

CONTRIBUTIONS

то

MOLECULAR PHYSICS

IN THE DOMAIN OF

RADIANT HEAT.

A SERIES OF MEMOIRS PUBLISHED IN THE 'PHILOSOPHICAL TRANSACTIONS'

AND 'PHILOSOPHICAL MAGAZINE,' WITH ADDITIONS.

BY

JOHN TYNDALL, LL.D. F.R.S.

PROFESSOR OF NATURAL PHILOSOPHY IN THE ROYAL INSTITUTION.

LONDON:
LONGMANS, GREEN, AND CO.
1872.

TO

HENRY BENCE JONES, M.D. D.C.L. F.R.S.

HON. SEC. R. I.

If unswerving devotion to the ROYAL INSTITUTION, firstly, and above all, as a school of original enquiry, and secondly as an organ for the diffusion of scientific knowledge, merit the grateful recognition of its Members and its Professors, then justice ought to require no stimulus from friendship, in associating these Researches with your name.

They were one and all conducted on the spot whence, during sixty years, issued in unbroken succession the labours of Young, Davy, and Faraday. Would that they were more worthy of their immortal antecedents!

JOHN TYNDALL.

ROYAL INSTITUTION: May 1872.

Erratum

Preface, line 8, for Magno-crystallic read Magne-crystallic

PREFACE.

In the Preface to the Third Edition of my work on Heat, written in January 1868, the hope was expressed that before the end of that year the original Memoirs which I had contributed to the 'Philosophical Transactions,' and other journals, during the previous eighteen years, would be presented to the scientific public. Hitherto this hope has been only partially fulfilled by the publication of the researches on Diamagnetism and Magno-crystallic Action.

The present volume contains the Memoirs on Radiant Heat, considered as an explorer of Molecular Condition. I have read them over carefully, and have tried to augment their clearness without altering their substance.

In front of each memoir is placed an analysis of its contents, from which the reader can at once learn the nature of the inquiry. I have also added here and there some necessary historic data.

The points of difference between the late Professor Magnus and myself regarding the action of air and that of aqueous vapour on radiant heat are placed in their proper sequence and relation. At the end of the series of Memoirs the discussion is resumed, and brought, I trust, to a fair conclusion.

viii

PREFACE.

I ought to inform the reader who desires but a partial or general acquaintance with these researches, that summaries of most of them have been already published in the various editions of my work on Heat.

Finally, I would offer my best thanks to the Council of the Royal Society for the ready courtesy with which they granted me the use of the Plates employed to illustrate these Memoirs in the 'Philosophical Transactions.'

JOHN TYNDALL.

ROYAL INSTITUTION: May 1872.

CONTENTS.

	PAGE
Analysis of Memoir I	2
I. On the Absorption and Radiation of Heat by Gases and	
Vapours, and on the Physical Connexion of Radiation,	
Absorption, and Conduction	7
Introduction	7
Sect. 1. The Galvanometer and its DefectsMagnetic Analysis of its Wire	8
2. First Experiments on Absorption by Ordinary Methods	11
3. Method of Compensation	13
4. Final Form of Apparatus	15
5. Absorption of Radiant Heat. First Results.—Action of Ozone	
and of Compound Gases on Radiant Heat	17
6. Variations of Density.—Relation of Absorption to Quantity of	
Matter	21
7. Action of Sulphuric-ether Vapour on Radiant Heat	24
8. Extension of Inquiry to other Vapours	27
9. Action of Chlorine.—Possible Influence of Vapours on the Interior	
Surface of the Experimental Tube	34
10. Action of Permanent Gases on Radiant Heat	36
11. Action of Aqueous Vapour.—Possible Effect of an Atmospheric	
Envelope on the Temperature of a Planet	38
12. RADIATION OF HEAT BY GASES. Reciprocal Experiments on	
Radiation and Absorption	41
13. The Varnishing of Polished Metal Surfaces by Gases	44
14. First Observation of the Radiation of a Vapour heated dynami-	
cally	44
15. On the Physical Connexion of Radiation, Absorption, and Con-	- 11
duction	46
	*0
Supplementary Remarks, 1872	51
1. Note on the Construction of the Thermo-electric Pile	51
2. Note on the Construction of the Galvanometer	53
3. Remarks on the different Values of Galvanometric Degrees	55
4. Calibration of the Galvanometer	56
Historic Remarks on Memoir I	59

X

CONTENTS.

	PAGI
Analysis of Memoir II	. 66
II. FURTHER RESEARCHES ON THE ABSORPTION AND RADIATIO	N
OF HEAT BY GASEOUS MATTER	. 69
Sect. 1. Recapitulation	. 69
2. New Apparatus	. 71
3. Preliminary Efforts and Precautions.—Chlorine, Ozone, and Aqueou	
Vapour	. 72
4. First Experiments on the Human Breath.—Chlorine and Hydro	
chloric Acid — Bromine and Hydrobromic Acid	. 75
5. New Experiments on Gases	. 80
6. Radiation through Black Glass and Lampblack	. 83
7. Selective Absorption by Lampblack	. 84
8. New Experiments on Vapours.—Further Proof of the Influence o	
Chemical Combination on the Absorption of Radiant Heat	. 85
9. Superior Action at one Pressure does not prove Superiority at all	1
Pressures	. 88
10. Dynamic Radiation and Absorption	. 89
11. To determine the Radiation and Absorption of Gases and Vapours	
without any Source of Heat external to the Gaseous Body itself	,
I.—Vapours	91
12. Attempted Estimate of Quantity of Radiant Vapour	93
13. II.—Gases	95
14. Influence of Length and Density of Radiating Column	96
15. Laplace's Correction for the Velocity of Sound.—Remarks on the	
Radiant Power of Molecules and Atoms	97
16. Action of Odours upon Radiant Heat	99
17. Action of Ozone upon Radiant Heat	102
18. Experiments of De la Rive and Meidinger 19. On the Constitution of Ozone	103
20. Action of Aqueous Vapour upon Radiant Heat.—Experiments of	104
Professor Magnus	
21. Night-Moisture on the Interior Surface of Experimental Tube	105
A h	
22. Proposed Solution of Discrepancies	110
23. Action of Atmospheric Envelope.—Possible Experimental Deter-	114
mination of the Temperature of Space	117
24. Remarks on the Experimental Evidence of Gaseous Conduction	117
-Influence of Density on Convection.—Internal Friction of Air	118
	110
Annual of Marcon III	
Analysis of Memoir III	124
III. On the Relation of Radiant Heat to Aqueous Vapour	127
1. Objections to Rock-salt Plates considered New Experimental	
Arrangement	127
Objection to Employment of London Air considered.—Radiation	
through Air from Various Localities	128
3. Radiation through Open Tubes	131
4. Radiation through Closed Tubes —The Quantity of Heat absorbed	
proportional to the Quantity of Humid Air	133
5. Radiation through the Open Air	135

CONTENTS.				
	Sect. 6. Application of Results to Meteorology.—Tropical Rains.—Cumuli. —Condensation by Mountains.—Temperatures at Great Eleva-	PAGE		
	tions.—Thermometric Range in Australia, Tibet, and Sahara.—Leslie's Observations.—Melloni on Serein	137		
	Analysis of Memoir IV	146		
IV.	. On the Passage of Radiant Heat through Dry and Humid			
	Air	149		
	Analysis of Memoir V	164		
V	. On the Absorption and Radiation of Heat by Gaseous and			
	Liquid Matter	165		
	Introduction	165		
	 Further Experiments on the Power of Gaseous Matter over Radiant Heat.—New Apparatus.—Absorption by Gaseous Strata of different Thicknesses 	166		
	2. Effect of an Atmospheric Shell of Gas or Vapour two inches thick			
	upon the Temperature of a Planet	170		
	through Gases in one or both	172		
	4. Influence of 'Sifting' by Gaseous Media	176		
	5. Application of Method to Vapours6. New Experiments on Dynamic Radiation.—Radiation of Dynami-	179		
	cally heated Gas through the same Gas, or through other Gases 7. Influence of Tarnish, or of a Lining on the Interior Surface of	183		
	Experimental Tube.—Dynamic Radiation from the Surface 8. Radiation of dynamically heated Vapour through the same Vapour and through a Vacuum.—Influence of Length of Radiating Column.	186		
	—Different Effects of Length on Gases and Vapours	188		
	9. First Comparison of the Actions of Liquids and their Vapours upon Radiant Heat	191		
	•			
	Analysis of Memoir VI	196		
VI.	CONTRIBUTIONS TO MOLECULAR PHYSICS	199		
	 Preliminary Considerations — Description of Apparatus Absorption of Radiant Heat of a certain Quality by eleven different Liquids at five different Thicknesses 	199 205		
	3. Absorption of Radiant Heat of the same Quality by the Vapours of these Liquids at a common Pressure	209		
	4. Order of Absorption of Liquids at a common Thickness, and Vapours at a common Pressure	210		
	5. Order of Absorption of Liquids and Vapours in proportional Quantities	211		
	6. Remarks on the Chemical Constitution of Bodies with reference to			
	their Powers of Absorption	214		

xii

CONTENTS.

	PAGE
Sect. 7. Transmission of Radiant Heat through Bodies opaque to Light.—	
Remarks on the Physical Cause of Transparency and Opacity .	215
8. Influence of the Temperature of the Source of Heat on the Trans-	
mission of Radiant Heat	219
9. Changes of Diathermancy through Changes of Temperature.—	
Radiation from Lampblack at 100° C. compared with that from	
white-hot Platinum	222
10. Changes of Diathermancy through Change of Source of Heat.—	
Radiation from Platinum and from Lampblack at the same	
Temperature	224
11. Radiation from Flames through Vapours.—Further Changes of	
Diathermancy	226
12. Radiation of Hydrogen Flame through Dry and Humid Air.—	
Influence of Vibrating Period on the Absorption	229
13. Radiation of Carbonic-oxide Flame through Dry and Humid Air,	
and through Carbonic Acid Gas.—Further illustration of Influ-	
ence of Vibrating Period	230
14. Comparative Radiation of Carbonic-oxide Flame through Carbonic	
Acid Gas and Olefiant Gas	232
15. Radiation of Hydrogen Flame through Carbonic Acid Gas and	
Olefiant Gas	233
16. Radiation of Carbonic-oxide Flame through Carbonic Oxide and	
of Bisulphide-of-Carbon Flame through Sulphurous Acid	234
17. Radiation of the Flames of Carbonic Oxide and Hydrogen through	
Sulphuric and Formic Ether Vapours.—Reversal of Order of	
Absorption	235
18. Radiation of Hydrogen Flame, and of Platinum Spiral plunged in	
Hydrogen Flame, through Liquids.—Conversion of Long Periods	
into Short ones	236
19. Radiation of Small Gas Flame compared with that of Hydrogen	
Flame—Further Changes of Diathermic Position	240
20. Explanation of Certain Results of Melloni and Knoblauch	241
21. Radiation of Hydrogen Flame through Lampblack, Iodine, and	
Rock-salt.—Diathermancy of Rock-salt examined	243
22. Physical Connexion between Radiation and Conduction	245
Analysis of Memoir VII.	250
AMEDINO OF ALEMONIA 4 II. , , , , , ,	200
VII. On Luminous and Obscure Radiation	253
1. Spectrum of Hydrogen Flame	253
2. Influence of Solid Particles	256
3. Persistence and Strengthening of Obscure Rays by Augmentation	200
of Temperature	256
4. Persistence and Strengthening of Rays illustrated by means of	200
a Ray-filter of Iodine and Bisulphide of Carbon.	258
5. Combustion by Invisible Rays	261
6. Melloni's Method of determining the Ratio of Visible to Invisible	201
Rays.—Diathermancy of Alum and of the Humours of the Eye.	263
	200

CONTENTS.	xiii
Analysis of Memoir VIII	PAGE . 270
VIII. On Calorescence, or the Transmutation of Heat Rays	
· · · · · · · · · · · · · · · · · · ·	
Sect. 1. General Statement of the Nature of this Inquiry 2. Source of Rays.—Employment of Rock-salt Train	. 273 . 275
 Methods of Experiment and Tabulated Results Graphic Representation of Results.—Curve of the Electric Spec- 	. 276
trum.—Deviations from Solar Spectrum 5. Rays from Obscure Sources of Heat contrasted with Obscure Rays from Luminous Sources of Heat.—Further Observations on the	. 279
Construction of a Ray-filter 6. Invisible Foci of the Electric-light.—Efforts to intensify their Heat —Danger of Bisulphide of Carbon, and trial of other substances.	
—Final Precautions	. 286
 Calorific Effects at Invisible Focus.—Placing of the Eye there Improvement of Mirrors.—Exalted Effects of Combustion at Dark 	. 2 90
Focus	. 293
9. Transmutation of Heat Rays.—Calorescence	294
10. Various Modes of obtaining with the Electric-light Invisible Foci for Combustion and Calorescence	ւ . 296
11. Invisible Foci of the Lime-light and the Sun	300
12. Relation of Colour to Combustion by Dark Rays	. 302
13. Calorescence through Ray-filters of Glass.—Remarks on the Black- bulb Thermometer	. 303
A Marrow TV	
Analysis of Memoir IX	308
IX. On the Influence of Colour and Mechanical Condition on Radiant Heat	r . 311⁄
1. Proof that White Bodies sometimes absorb Heat more copiously	
than Dark ones.—Explanation	
relation to Radiant Heat 3. New Experiments on Chemical Precipitates.—Influence of Colour and Chemical Constitution.—Sulphur Cement	
4. Tabulation of the Radiant Powers of Powders.—Employment of	
Electric Attraction instead of Sulphur Cement	. 32 0
Rock-salt.—Unequal Diathermancy of the Substance 6. Radiation of Powders.—Reciprocity of Radiation and Absorp-	321
tion	325
Analysis of Memoir X	330
X. On the Action of Rays of High Refrangibility upon	
Gaseous Matter	
 Introduction Theoretic Notions: Formation of Actinic Clouds through the 	. 333
Decomposition of Vapours by Light	336
3. Description of Apparatus	338

XiV CONTENTS.

						PAGE
Sec	t. 4. The Floating Matter of the Air					338
	5. Deportment of Nitrite of Amyl					342
	6. Iodide of Allyl and Iodide of Isopropyl					345
	7. Deportment of Liquids and of their Vapours			ays of	High	
	Refrangibility		•			346
	8. Influence of a Second Body on the Actinic	Proces	S		•	349
	9. Generation of Artificial Skies	•	•		•	352
	10. Changes of Polarization in Actinic Clouds		•		. :	354
	11. Early Difficulties and Sources of Error.—		of L	nfinite	simal	
	Quantities of Vapour		•		•	357
	12. Details of Experiments	•	•	• •	•	362
	13. Action of Rays of Low Refrangibility .	•	•		•	374
XI.	AQUEOUS VAPOUR: DISCUSSION RESUMED	• .				378
	ANATHOR OF PROPERTY M. Comerce Danson of Co.		a			
	Analysis of Professor Magnus's Paper on Ga Absorption	SEOUS	COND	UCTION	AND	970
	· · · · · · · · · · · · · · · · · · ·	•	•		•	378
	1. Gaseous Conductivity	•	•		•	378
	2. Gaseous Diathermancy		•		•	380
	3. Proof of Convection4. Experiments in Glass Tubes with Glass En				•	381
			•		•	382
	OBSERVATIONS ON PROFESSOR MAGNUS'S PAPER '	Ом_те	E IN	FLUEN	CE OF	
	THE ABSORPTION OF HEAT ON THE FORMATION	of De	w'.			383
	1. Explanatory Remarks	•				383
	2. Discussion of Paper	•	•			385
	First Remarks on the Paper of Professor Magnus	3				387
	Professor Wild's Experiments Professor Magnus's Last Paper					389
	Professor Magnus's Last Paper					390
	Remarks on Professor Magnus's Last Paper.	•				392
	Concluding Remarks and Summary	•	•			396
	Ice-making in the Tropics	•	•			399
XII.	RECENT RESEARCHES ON RADIANT HEAT					405
XIII.	On Radiation through the Earth's Atm	OSPHI	CRE .		•	421
VIV	On a New Series of Chemical React	OMO	DDO.	nman	אמ ר	
AIV.	_	COMO	PAU.	PUCE) BY	
	LIGHT	•	•	•	•	425
	Action of the Electric-light					425
	Action of Sunlight			. ,		427
	Physical Considerations					427
	Production of the Blue of the Sky by the Decompo	sition	of Nit	rite of	Amyl	429
		-				
XV.	ON THE BLUE COLOUR OF THE SKY, THE					
	SKY-LIGHT, AND ON THE POLARIZATION O	F Lie	HT I	BY CL	OUDY.	
	MATTER GENERALLY					431
*****	0.0					
XVI.	On Cometary Theory	•	•	•		441
XVII	On the Formation and Phenomena of C	LOUD	S			445

LIST OF PLATES.

PLATE ILLUSTRATING MEMOIR I. ON THE ABSORPTION AND RADIATION
OF HEAT BY GASES AND VAPOURS, AND ON THE PHYSICAL CONNEXION OF RADIATION, ABSORPTION, AND CONDUCTION . Frontispiece.

PLATE ILLUSTRATING MEMOIR XI. ON AQUEOUS VAPOUR to face page 378