

CAMBRIDGE LIBRARY COLLECTION

Books of enduring scholarly value

Life Sciences

Until the nineteenth century, the various subjects now known as the life sciences were regarded either as arcane studies which had little impact on ordinary daily life, or as a genteel hobby for the leisured classes. The increasing academic rigour and systematisation brought to the study of botany, zoology and other disciplines, and their adoption in university curricula, are reflected in the books reissued in this series.

The Natural Philosophy of Plant Form

When she was elected a Fellow of the Royal Society in 1946, Agnes Arber (1879–1960) was one of only three women to have been admitted into the institution. Arber conducted research that focused mainly on the morphology of flowering plants, but her work is characterised by its explorations of historical botany and evolution. First published in 1950, this book widens the scope of morphology into a study of all aspects of form across the whole chronology of botany. Arber begins with Aristotle and investigates the work of early modern botanists such as Bacon and Goethe, before examining the effects of this wider approach on subjects such as evolution and taxonomy. Arguing that post-Darwinian doctrine often causes botanists to twist their observations to suit a hypothetical history of phylogenesis, rather than changing the hypothesis to suit observational facts, this bold and fascinating text will interest students of biology and philosophy alike.

Cambridge University Press has long been a pioneer in the reissuing of out-of-print titles from its own backlist, producing digital reprints of books that are still sought after by scholars and students but could not be reprinted economically using traditional technology. The Cambridge Library Collection extends this activity to a wider range of books which are still of importance to researchers and professionals, either for the source material they contain, or as landmarks in the history of their academic discipline.

Drawing from the world-renowned collections in the Cambridge University Library and other partner libraries, and guided by the advice of experts in each subject area, Cambridge University Press is using state-of-the-art scanning machines in its own Printing House to capture the content of each book selected for inclusion. The files are processed to give a consistently clear, crisp image, and the books finished to the high quality standard for which the Press is recognised around the world. The latest print-on-demand technology ensures that the books will remain available indefinitely, and that orders for single or multiple copies can quickly be supplied.

The Cambridge Library Collection brings back to life books of enduring scholarly value (including out-of-copyright works originally issued by other publishers) across a wide range of disciplines in the humanities and social sciences and in science and technology.

The Natural Philosophy of Plant Form

AGNES ARBER

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paolo, Delhi, Mexico City

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781108045056

© in this compilation Cambridge University Press 2012

This edition first published 1950 This digitally printed version 2012

ISBN 978-1-108-04505-6 Paperback

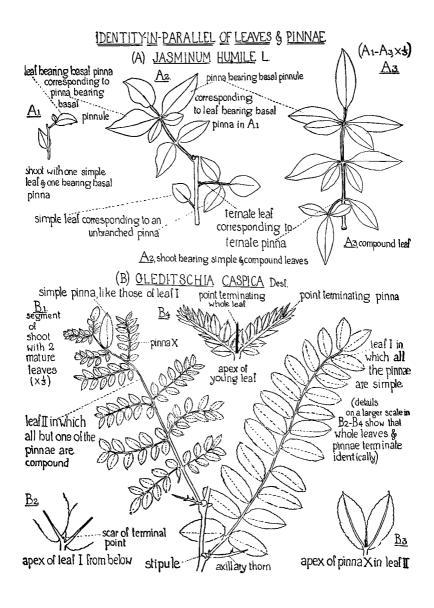
This book reproduces the text of the original edition. The content and language reflect the beliefs, practices and terminology of their time, and have not been updated.

Cambridge University Press wishes to make clear that the book, unless originally published by Cambridge, is not being republished by, in association or collaboration with, or with the endorsement or approval of, the original publisher or its successors in title.

THE NATURAL PHILOSOPHY OF PLANT FORM

By AGNES ARBER

HERBALS: THEIR ORIGIN AND EVOLUTION A CHAPTER IN THE HISTORY OF BOTANY (Second Edition)


THE GRAMINEAE: A STUDY OF CEREAL, BAMBOO, AND GRASS

MONOCOTYLEDONS (CAMBRIDGE BOTANICAL HANDBOOK)

WATER PLANTS

THE NATURAL PHILOSOPHY OF PLANT FORM

BY

AGNES ARBER

M.A., D.Sc., F.R.S., F.L.S.

CAMBRIDGE AT THE UNIVERSITY PRESS 1950

PUBLISHED BY THE SYNDICS OF THE CAMBRIDGE UNIVERSITY PRESS

London Office: Bentley House, N.W. I American Branch: New York

Agents for Canada, India, and Pakistan: Macmillan

Printed in Great Britain at the University Press, Cambridge (Brooke Crutchley, University Printer)

PREFACE

N the present study I have tried to express certain general ideas, which have gradually disengaged themselves in my mind, in the course of a lifetime's concern with the morphology of flowering plants, both as it is understood to-day, and in its historical development from the time of Aristotle onwards. I began by thinking of this subject quite simply as a branch of natural science, but I have come finally to feel that it reaches its fullest reality in the region of natural philosophy, where it converges upon metaphysics, to which it brings its own, distinctively visual, contribution. In this book I have made a tentative and provisional attempt to review the relations of parts in the flowering plants in the light of those more universal, and also more stringent, modes of thought, which are characteristic of philosophy rather than of biology. There are indications that, when morphology is subjected to this discipline, its content may be unified by the synthesis of various theories that are, from the standpoint of analytical science, irreconcilable. The thread running through the following pages is thus a belief in the vital necessity of a linkage between morphological and philosophic thought.

This small treatise is the upshot of so many years that a catalogue raisonné of those to whom I have owed practical help or intellectual stimulus would expand this preface into an autobiography; so I must content myself with recording how deeply beholden I am to the generous comradeship of fellowworkers, above all when this has taken the form of enlightening criticism.

To my daughter, Muriel, I dedicate this book, in the consciousness of its having come into being on the background of our unending talks about "why things are, and that sort of thing".

AGNES ARBER

CAMBRIDGE 19 December 1949

vii

ACKNOWLEDGEMENTS

AM indebted to the Editor of Biological Reviews for permission to incorporate in this book parts of two articles of mine, which appeared in his journal. I have also to express my gratitude to the following publishers and editors, who have allowed me to quote from translations from the classics, for which they are responsible: the Clarendon Press, for certain passages from D'Arcy W. Thompson, Historia animalium, and W. Ogle, De partibus animalium—both in the Oxford translation of the Works of Aristotle; the Editors of the Loeb Classical Library, and Messrs W. Heinemann Ltd., for citations from W. S. Hett, Aristotle on the Soul, and A. Hort, Theophrastus, Enquiry into Plants; and Messrs Longmans Green and Co. Ltd., for an extract from W. Ogle, Aristotle on Youth and Old Age. In addition, I wish to thank Dr Robert E. Dengler, Professor of Classics, the Pennsylvania State College, for his kindness in letting me cite his version of the De Causis Plantarum of Theophrastus.

I desire also to acknowledge with gratitude the expert guidance and the invariable patience of the staff of the Cambridge University Press.

A. A.

CONTENTS

List of Illi	ustrations pag	ge xiii
Chapter I	The Meaning and Content of Plant Morphology	1
II	The Plant Morphology of the Aristotelian School	9
III	The Plant Morphology of Albertus Magnus and Andrea Cesalpino	24
IV	Plant Morphology from Joachim Jung to Goethe and de Candolle	33
V	The Concept of the Organisation Type	59
VI	The Partial-shoot Theory of the Leaf	70
VII	The Urge to Whole-shoot-hood in the Leaf	93
VIII	The Bearing of the Partial-shoot Theory of the Leaf on other Morphological Problems	124
IX	Repetitive Branching and the <i>Gestalt</i> Type, with special Reference to Parallelism	136
X	The Mechanism of Plant Morphology	162
ΧI	The Interpretation of Plant Morphology	199
List of Books and Memoirs cited		212
Index		230

LIST OF ILLUSTRATIONS

	Identity-in-parallel of leaves and pinnae Frontis	piece
1.	Vegetative features in the floral shoot pag	e 49
2.	Parallelism between flower and vegetative shoot	52
3.	Transitional features in the parts of the flower	53
4.	Transitions between vegetative and reproductive members	
	in the flower	54
5.	Foliar characters in stamen anatomy	57
6.	Comparison of seed-leaves and stipules; persistent petiole;	
	foliaceous calyx	81
7.	Dorsiventrality in shoots	88
8.	Comparison between a compound-pinnate leaf and a	
^	branch system	90
9.	Predominance of laterals over the parent axis in leaves and shoots	96
10.	Predominance of lateral over median region in leaves and	UU
•••	leaflets	98
11.	Stipular laminae and rachis tendrils	100
12.	Relative importance of median and lateral veins	101
13.	Predominance of lateral over median region in phyllomes,	
	and of corona over its parent perianth	103
14.	Individual bundles adopting stelar characters; leaf-	
	branching; budding from leaves; abnormal leaf-	
	peltation	106
15.	Funnel-shaped (ascidial) phyllomes, and leaves with shoot-like or ascidial outgrowths	110
16	Peltation in compound leaves	112
16.	Peltation in compound leaves, and the comparison with	112
17.	shoots	115
18.	Relation of lamina and rachis in compound leaves; and	
	leaf-budding	115
19.	Shoot-like pinnate leaves; and the origin of more complex	
	forms from ternation	117

xiii

LIST OF ILLUSTRATIONS

20.	Transition from simple to compound-pinnate leaves page	ge 119
21.	Pedation and pinnation	121
22.	Midrib- and rachis-leaves	122
23.	Shoot production from a root	133
24.	Transition from simple leaves to leaves with ternation	
	of the first, second, third, and fourth order	137
25.	Ternation in a whole lamina, and in its pinnae	138
26.	Transition from pinnae to hairs	140
27.	Pseudanthia	146
28.	Shoot, bearing two generations of umbels, replacing an umbellule	150
29.	Marginal corolla-like development in inflorescences	152
3 0.	Inflorescences developed from floral axes	154
31.	Corresponding developments located in different floral	
	whorls	156
32.	Numerical variation in floral whorls and in phyllotaxis	163
33.	Numerical variation in floral whorls	165
34.	Colour variation in sectors of a shoot or leaf	167
35.	Results of differential growth in flowers and fruits	169
36.	The effect of pressure on vegetative and reproductive	
	phyllomes	172
37.	Crowding as a factor in ovule development	175
38.	Fusion of bracteole and inflorescence axis	176
39.	Replacement of flowers by inflorescences	179
40.	Hypertrophy of basal or terminal flowers, or inflorescences	181
41.	Peculiarities of the terminal umbellule in an individual umbel	183
42.	Peculiarities of the terminal umbel of a whole plant	186
43.	Peloric flowers in the terminal region of an inflorescence	188
44.	Lateral and terminal peloric flowers	189
45.	Corolla differences associated with sex differences	192
46.	Changes in inflorescences associated with a permanent	
	or temporary sterile phase	194

xiv