CAMBRIDGE LIBRARY COLLECTION

Books of enduring scholarly value

Philosophy

This series contains both philosophical texts and critical essays about philosophy, concentrating especially on works originally published in the eighteenth and nineteenth centuries. It covers a broad range of topics including ethics, logic, metaphysics, aesthetics, utilitarianism, positivism, scientific method and political thought. It also includes biographies and accounts of the history of philosophy, as well as collections of papers by leading figures. In addition to this series, primary texts by ancient philosophers, and works with particular relevance to philosophy of science, politics or theology, may be found elsewhere in the Cambridge Library Collection.

History of the Inductive Sciences

A central figure in Victorian science, William Whewell (1794–1866) held professorships in Mineralogy and Moral Philosophy at Trinity College, Cambridge, before becoming Master of the college in 1841. His mathematical textbooks, such as *A Treatise on Dynamics* (1823), were instrumental in bringing French analytical methods into British science. This three-volume history, first published in 1837, is one of Whewell's most famous works. Taking the 'acute, but fruitless, essays of Greek philosophy' as a starting point, it provides a history of the physical sciences that culminates with the mechanics, astronomy, and chemistry of 'modern times'. Volume 2 focuses on the rise and development of modern mechanics in the seventeenth century. Whewell shows how Galileo's laws of motion exemplify a paradigmatic shift from 'formal' to 'physical' sciences – a new approach concerned with explaining causes rather than merely observing phenomena. It also discusses the implications for physical astronomy of Newton's discoveries.

CAMBRIDGE

Cambridge University Press 978-1-108-01925-5 - History of the Inductive Sciences: From the Earliest to the Present Times, Volume 2 William Whewell Frontmatter More information

Cambridge University Press has long been a pioneer in the reissuing of out-of-print titles from its own backlist, producing digital reprints of books that are still sought after by scholars and students but could not be reprinted economically using traditional technology. The Cambridge Library Collection extends this activity to a wider range of books which are still of importance to researchers and professionals, either for the source material they contain, or as landmarks in the history of their academic discipline.

Drawing from the world-renowned collections in the Cambridge University Library, and guided by the advice of experts in each subject area, Cambridge University Press is using state-of-the-art scanning machines in its own Printing House to capture the content of each book selected for inclusion. The files are processed to give a consistently clear, crisp image, and the books finished to the high quality standard for which the Press is recognised around the world. The latest print-on-demand technology ensures that the books will remain available indefinitely, and that orders for single or multiple copies can quickly be supplied.

The Cambridge Library Collection will bring back to life books of enduring scholarly value (including out-of-copyright works originally issued by other publishers) across a wide range of disciplines in the humanities and social sciences and in science and technology.

History of the Inductive Sciences

From the Earliest to the Present Times

VOLUME 2

WILLIAM WHEWELL

© in this web service Cambridge University Press

www.cambridge.org

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paolo, Delhi, Dubai, Tokyo, Mexico City

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781108019255

© in this compilation Cambridge University Press 2010

This edition first published 1837 This digitally printed version 2010

ISBN 978-1-108-01925-5 Paperback

This book reproduces the text of the original edition. The content and language reflect the beliefs, practices and terminology of their time, and have not been updated.

Cambridge University Press wishes to make clear that the book, unless originally published by Cambridge, is not being republished by, in association or collaboration with, or with the endorsement or approval of, the original publisher or its successors in title.

HISTORY

ог тне

INDUCTIVE SCIENCES.

VOL. II.

HISTORY

OF THE

INDUCTIVE SCIENCES,

FROM THE EARLIEST TO THE PRESENT TIMES.

BY THE

REV. WILLIAM WHEWELL, M.A.,

FELLOW AND TUTOR OF TRINITY COLLEGE, CAMBRIDGE; PRESIDENT OF THE GEOLOGICAL SOCIETY OF LONDON.

- - -----

IN THREE VOLUMES.

Λαμπάδια έχοντες διαδώσουσιν άλλήλοις.

VOLUME THE SECOND.

LONDON : JOHN W. PARKER, WEST STRAND. CAMBRIDGE : J. AND J. J. DEIGHTON.

M.DCCC.XXXVII.

© in this web service Cambridge University Press

www.cambridge.org

CONTENTS

OF

THE SECOND VOLUME.

THE MECHANICAL SCIENCES.

III MECHANICAL SCIENCE

BOOK VI.

HISTORY OF MECHANICS, INCLUDING FLUID MECHANICS.

Introduction	Page 5
CHAPTER I.—PRELUDE TO THE EPOCH OF GALILEO.	
Sect. 1. Prelude to the Science of Statics	7
Sect. 2. Revival of the Scientific Idea of Pressure. Stevinus.	
Equilibrium of Oblique Forces	14
Sect. 3. Prelude to the Science of Dynamics. Attempts at	
the First Law of Motion	17
CHAPTER II.—INDUCTIVE EPOCH OF GALILEO. DISCOVERY OF THE LAWS OF MOTION IN SIMPLE CASES.	
Sect. 1. Establishment of the First Law of Motion	22
Sect. 2. Formation and Application of the Notion of Acce-	
lerating Force. Laws of Falling Bodies .	26
Sect. 3. Establishment of the Second Law of Motion. Cur- vilinear Motions	36
Sect. 4. Generalisation of the Laws of Equilibrium. Prin-	50
ciple of Virtual Velocities	39
Sect. 5. Attempts at the Third Law of Motion. Notion of	01/
Momentum	44
CHAPTER III.—SEQUEL TO THE EPOCH OF GALILEO. PERIOD OF VERIFICATION AND DEDUCTION	52
CHAPTER IV — DISCOVERY OF THE MECHANICAL PRINCIPLES OF FLUIDS.	
Sect. 1. Rediscovery of the Laws of Equilibrium of Fluids	61
Sect. 2. Discovery of the Laws of Motion of Fluids .	67
VOL. II. a	

Cambridge University Press
978-1-108-01925-5 - History of the Inductive Sciences: From the Earliest
to the Present Times, Volume 2
William Whewell
Frontmatter
More information
Moreinformation

vi CONTENTS OF THE SECOND VOLUME.
CHAPTER V.—GENERALISATION OF THE PRINCIPLES OF MECHANICS. Page
Sect. 1. Generalisation of the Second Law of Motion. Cen- tral Forces
Sect. 2. Generalisation of the Third Law of Motion. Cen- tre of Oscillation. Huyghens
CHAPTER VI.—Sequel of the Generalisation of the Prin- ciples of Mechanics. Period of Mathematical Deduc-
TION. ANALYTICAL MECHANICS 91
1. Geometrical Mechanics. Newton, &c
2. Analytical Mechanics. Euler
3. Mechanical Problems
4. D'Alembert's Principle
5. Motion in Resisting Media. Ballistics
6. Constellation of Mathematicians
7. The Problem of Three Bodies 100
8. Mécanique Céleste, &c
9. Precession. Motion of Rigid Bodies 108
10. Vibrating Strings
11. Equilibrium of Fluids. Figure of the Earth. Tides 111
12. Capillary Action
13. Motion of Fluids
14. Various General Mechanical Principles 118
15. Analytical Generality. Connexion of Statics and Dy-
namics
Note on Leonardo da Vinci

BOOK VII.

HISTORY OF PHYSICAL ASTRONOMY.

CHAPTER I.—PRELUDE TO THE INDUCTIVE EPOCH OF	
NEWTON	127
CHAPTER II.—THE INDUCTIVE EPOCH OF NEWTON. DISCO-	
VERY OF THE UNIVERSAL GRAVITATION OF MATTER, AC-	
CORDING TO THE LAW OF THE INVERSE SQUARE OF THE	
DISTANCE	152
	153
2. Force in Different Points of an Orbit	154

	vii
3. Moon's Gravity to the Earth 15 4. Mutual Attraction of all the Celestial Bodies 16 5	57 53
Reflections on the Discovery18Character of Newton18	
CHAPTER III.—Sequel to the Epoch of Newton. Recep- tion of the Newtonian Theory.	
Sect. 1. General Remarks . </td <td>90</td>	90
CHAPTER IV.—Sequel to the Epoch of Newton, conti- nued. Verification and Completion of the Newto- nian Theory.	
Sect. 1. Division of the Subject	06 07
	16
Inequalities . <t< td=""><td>25</td></t<>	25
Sect. 6 to Comets . 2:	29 36
Sect. 7	40
	45 46
CHAPTER V.—DISCOVERIES ADDED TO THE NEWTONIAN THEORY.	
Sect. 2. Discovery of the Velocity of Light.Römer.2.Sect. 3. Discovery of Aberration.Bradley2.	54 57 58 60
Herschels	62

a 2

viii CONTENTS OF THE SECOND VOLUME.

CHAPTER VI.—THE INSTRUMENTS AND AIDS OF ASTRONOMY DURING THE NEWTONIAN PERIOD.

								rage
Sect. 1.	Instruments							266
-	Observatories							275
Sect. 3.	Scientific Societies				•			278
Sect. 4.	Patrons of Astronomy	•		•			•	280
Sect. 5.	Astronomical Expeditions		•			•		282
Sect. 6.	Present State of Astronomy						•	283

THE SECONDARY MECHANICAL SCIENCES.

BOOK VIII.

HISTORY OF ACOUSTICS.

Introduction	293						
CHAPTER IPRELUDE TO THE SOLUTION OF PROBLEMS IN							
Acoustics	295						
Chapter II.—Problem of the Vibrations of Strings $\ .$	302						
CHAPTER III.—PROBLEM OF THE PROPAGATION OF SOUND	310						
CHAPTER IV PROBLEM OF DIFFERENT SOUNDS OF THE							
SAME STRING	317						
CHAPTER V.—PROBLEM OF THE SOUNDS OF PIPES .	321						
CHAPTER VIPROBLEM OF DIFFERENT MODES OF VIBRATION							
OF BODIES IN GENERAL	325						

BOOK IX.

HISTORY	Y OF	OPTICS,	FOI	RMAL	AND	PIIY	SICAL.	
Introduction	•	•	•		•		•	339
		FORMA	L 01	PTICS				
CHAPTER II	PRIMA LIGH	ry Indu	CTIOI WS O	n of (f Ref	Optics Lectio	. RA N.	YS OF	342

CHAPTER II.-DISCOVERY OF THE LAW OF REFRACTION . 344

Cambridge University Press
978-1-108-01925-5 - History of the Inductive Sciences: From the Earliest
to the Present Times, Volume 2
William Whewell
Frontmatter
Moreinformation

CONTENTS OF THE SECOND VOLUME.	ix
CHAPTER III.—DISCOVERY OF THE LAW OF DISPERSION BY REFRACTION	Page 349
CHAPTER IVDISCOVERY OF ACHROMATISM	362
CHAPTER VDISCOVERY OF THE LAWS OF DOUBLE RE- FRACTION	366
CHAPTER VIDISCOVERY OF THE LAWS OF POLARIZATION	372
CHAPTER VII.—DISCOVERY OF THE LAWS OF THE COLOURS OF THIN PLATES	378
CHAPTER VIII.—ATTEMPTS TO DISCOVER THE LAWS OF OTHER PHENOMENA	381
CHAPTER IX.—DISCOVERY OF THE LAWS OF PHENOMENA OF DIPOLARIZED LIGHT	384
PHYSICAL OPTICS.	
CHAPTER X.—PRELUDE TO THE EPOCH OF YOUNG AND FRESNEL	390
CHAPTER XIEPOCH OF YOUNG AND FRESNEL.	
Sect. 1. Introduction	402
Sect. 2. Explanation of the Periodical Colours of Thin Plates and Shadows by the Undulatory Theory Sect. 3. Explanation of Double Refraction by the Undu-	404
latory Theory	412
Sect. 4. Explanation of Polarization by the Undulatory Theory	415
Sect. 5. Explanation of Dipolarization by the Undulatory Theory	424
CHAPTER XII.—SEQUEL TO THE EPOCH OF YOUNG AND FRESNEL. RECEPTION OF THE UNDULATORY THEORY .	430
CHAPTER XIII.—CONFIRMATION AND EXTENSION OF THE UNDULATORY THEORY.	442
1. Double Refraction of Compressed Glass2. Circular Polarization	443 444

х	CONTENTS OF THE SECOND VOLUME.		
			Page
3.	Elliptical Polarization in Quartz		447
4.	Differential Equations of Elliptical Polarization	•	448
5.	Elliptical Polarization of Metals		449
6.	Newton's Rings by Polarized Light		450
	Conical Refraction		451
8.	Fringes of Shadows		451
9.	Objections to the Theory		452
	Dispersion, on the Undulatory Theory	•	453
11.	Conclusion		457

воок х.

HISTORY	OF	THERMOTICS	AND	ATMOLOGY.
---------	----	------------	-----	-----------

Introduction	•	465
THERMOTICS PROPER.		
CHAPTER I.—THE DOCTRINES OF CONDUCTION A RADIATION.	AND	
Sect. 1. Introduction of the Doctrine of Conduction		468
Sect. 2 Radiation		472
Sect. 3. Verification of the Doctrines of Conduction	and	
Radiation		475
Sect. 4. The Geological and Cosmological Applicatio	n of	
Thermotics	•	476
1. Effect of Solar Heat on the Earth .		477
2. Climate		479
3. Temperature of the Interior of the Earth		481
4. Heat of the Planetary Spaces		484
Sect. 5. Correction of Newton's Law of Cooling .		485
Sect. 6. Other Laws of Phenomena with respect to R		
ation		488
Sect. 7. Fourier's Theory of Radiant Heat .		489
Sect. 8. Discovery of the Polarization of Heat .	•	492
CHAPTER IITHE LAWS OF CHANGES OCCASIONED BY	Нел	т.
Sect. 1. The Law of Expansion of Gases. Dalton	and	
Gay-Lussac		496
Sect. 2. Specific Heat. Change of Consistence .		
Sect. 3. The Doctrine of Latent Heat		499

Cambridge University Press
978-1-108-01925-5 - History of the Inductive Sciences: From the Earliest
to the Present Times, Volume 2
William Whewell
Frontmatter
More information

CONTENTS OF THE SECOND VOLUME. xi

ATMOLOGY.

CHAPTER III.—THE RELATION OF VAPOUR AND AIR.	_
	Page
Sect. 1. Prelude to Dalton's Doctrine of Evaporation .	501
Sect. 2. Dalton's Doctrine of Evaporation	509
Sect. 3. Determination of the Laws of the Elastic Force	
of Steam	514
Sect. 4. Consequences of the Doctrine of Evaporation.	
Explanation of Rain, Dew, and Clouds .	518
CHAPTER IV.—PHYSICAL THEORIES OF HEAT	524
Thermotical Theories	525
Atmological Theories	529
Conclusion	533

ADDITIONAL CORRECTION IN VOL. II.

Page 105, line 14. Euler was the true author of the method of the variation of elements. The first essay of this method appears in a memoir in 1749; and it was further developed in another memoir in 1756, ten years before that of Lagrange mentioned in the text. See Laplace, Mécanique Celeste, livre xv., page 305, 310.

А

HISTORY

OF

THE INDUCTIVE SCIENCES,

§.c.

VOLUME THE SECOND.

VOL. II.

В

CAMBRIDGE

Cambridge University Press 978-1-108-01925-5 - History of the Inductive Sciences: From the Earliest to the Present Times, Volume 2 William Whewell Frontmatter More information

> As pilot well expert in perilous wave That to a steadfast star his course hath bent, When foggy mists or cloudy tempests have The faithful light of that fair lamp yblent, And covered heaven with hideous dreriment; Upon his card and compas firms his eye, The maysters of his long experiment, And to them does the steddy helm apply, Bidding his winged vessel fairly forward fly.

> > SPENSER, Faerie Queen, b. ii. c. 7.

BOOK VI.

THE MECHANICAL SCIENCES.

HISTORY OF MECHANICS,

INCLUDING

FLUID MECHANICS.

B 2

> ΚΡΑΤΟΣ ΒΙΑ ΤΕ, σφών μὲν ἐντολη Διὸς Ἐχει τέλος δη, κ'ουδὲν ἐμποδών ἔτι. Æschylus. Prom. Vinct. 13.

You, FORCE and POWER, have done your destined task; And nought impedes the work of other hands.

INTRODUCTION.

WE enter now upon a new region of the human In passing from Astronomy to Mechanics mind. we make a transition from the *formal* to the *physical* sciences;-from time and space to force and matter;-from phenomena to causes. Hitherto we have been concerned only with the paths and orbits, the periods and cycles, the angles and distances, of the objects to which our sciences applied; namely, the heavenly bodies. How these motions are produced; -by what agencies, impulses, powers, they are determined to be what they are;--of what nature are the objects themselves ;-are speculations which we have hitherto not dwelt upon. The history of such speculations now comes before us; but, in the first place, we must consider the history of speculations concerning motion in general, terrestrial as well We must first attend to Mechanics. as celestial. and afterwards return to Physical Astronomy.

In the same way in which the development of pure mathematics, which began with the Greeks, was a necessary condition of the progress of formal astronomy, the creation of the science of mechanics now became necessary to the formation and progress of physical astronomy. Geometry and mechanics

vi

INTRODUCTION.

were cultivated for their own sakes; but they supplied ideas, language, and reasoning to other sciences. If the Greeks had not cultivated Conic Sections, Kepler could not have superseded Ptolemy; if the Greeks had cultivated Dynamics, Kepler might have anticipated Newton.