CAMBRIDGE LIBRARY COLLECTION

Books of enduring scholarly value

Mathematical Sciences

From its pre-historic roots in simple counting to the algorithms powering modern desktop computers, from the genius of Archimedes to the genius of Einstein, advances in mathematical understanding and numerical techniques have been directly responsible for creating the modern world as we know it. This series will provide a library of the most influential publications and writers on mathematics in its broadest sense. As such, it will show not only the deep roots from which modern science and technology have grown, but also the astonishing breadth of application of mathematical techniques in the humanities and social sciences, and in everyday life.

Principles of Geometry

Henry Frederick Baker (1866–1956) was a renowned British mathematician specialising in algebraic geometry. He was elected a Fellow of the Royal Society in 1898 and appointed the Lowndean Professor of Astronomy and Geometry in the University of Cambridge in 1914. First published between 1922 and 1925, the six-volume *Principles of Geometry* was a synthesis of Baker's lecture series on geometry and was the first British work on geometry to use axiomatic methods without the use of co-ordinates. The first four volumes describe the projective geometry of space of between two and five dimensions, with the last two volumes reflecting Baker's later research interests in the birational theory of surfaces. The work as a whole provides a detailed insight into the geometry which was developing at the time of publication. This, the sixth and final volume, describes the birational geometric theory of surfaces.

Cambridge University Press 978-1-108-01782-4 - Principles of Geometry, Volume 6 H. F. Baker Frontmatter <u>More information</u>

> Cambridge University Press has long been a pioneer in the reissuing of out-of-print titles from its own backlist, producing digital reprints of books that are still sought after by scholars and students but could not be reprinted economically using traditional technology. The Cambridge Library Collection extends this activity to a wider range of books which are still of importance to researchers and professionals, either for the source material they contain, or as landmarks in the history of their academic discipline.

Drawing from the world-renowned collections in the Cambridge University Library, and guided by the advice of experts in each subject area, Cambridge University Press is using state-of-the-art scanning machines in its own Printing House to capture the content of each book selected for inclusion. The files are processed to give a consistently clear, crisp image, and the books finished to the high quality standard for which the Press is recognised around the world. The latest print-on-demand technology ensures that the books will remain available indefinitely, and that orders for single or multiple copies can quickly be supplied.

The Cambridge Library Collection will bring back to life books of enduring scholarly value (including out-of-copyright works originally issued by other publishers) across a wide range of disciplines in the humanities and social sciences and in science and technology.

Principles of Geometry

Volume 6: Introduction to the Theory of Algebraic Surfaces and Higher Loci

H.F. BAKER

© in this web service Cambridge University Press

www.cambridge.org

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paolo, Delhi, Dubai, Tokyo, Mexico City

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781108017824

© in this compilation Cambridge University Press 2010

This edition first published 1933 This digitally printed version 2010

ISBN 978-1-108-01782-4 Paperback

This book reproduces the text of the original edition. The content and language reflect the beliefs, practices and terminology of their time, and have not been updated.

Cambridge University Press wishes to make clear that the book, unless originally published by Cambridge, is not being republished by, in association or collaboration with, or with the endorsement or approval of, the original publisher or its successors in title.

Cambridge University Press 978-1-108-01782-4 - Principles of Geometry, Volume 6 H. F. Baker Frontmatter More information

PRINCIPLES OF GEOMETRY

Cambridge University Press 978-1-108-01782-4 - Principles of Geometry, Volume 6 H. F. Baker Frontmatter <u>More information</u>

> LONDON Cambridge University Press FETTER LANE

NEW YORK • TORONTO BOMBAY • CALCUTTA • MADR**AS** Macmillan

> токчо Maruzen Company Ltd

> > All rights reserved

PRINCIPLES OF GEOMETRY

BY

H. F. BAKER, Sc.D., LL.D., F.R.S. LOWNDEAN PROFESSOR, AND FELLOW OF ST JOHN'S COLLEGE, IN THE UNIVERSITY

VOLUME VI INTRODUCTION TO THE THEORY OF ALGEBRAIC SURFACES AND HIGHER LOCI

CAMBRIDGE

AT THE UNIVERSITY PRESS

1933

© in this web service Cambridge University Press

Cambridge University Press 978-1-108-01782-4 - Principles of Geometry, Volume 6 H. F. Baker Frontmatter <u>More information</u>

PRINTED IN GREAT BRITAIN

PREFACE

THE origin and final purpose of this volume, and the preceding, have been stated in the preface to the latter. It may be useful to describe in outline the contents of the present volume. The first chapter deals with the theory of correspondence, mainly of points on one or two curves, with inclusion of the treatment by transcendental methods, and the connection with the theory of defective integrals. The second chapter attempts an exposition of Schubert's remarkable ideas, which are as interesting logically as geometrically, and of the extension of the theory of correspondence to aggregates of any dimension. The third chapter is in part a reminder of theorems which belong to plane geometry, and in part a sketch of general theorems for rational surfaces. In the fourth chapter the elementary preliminary properties of surfaces in ordinary space, and in space of four dimensions, are dealt with. Chapter V is that which is concerned with the most interesting and the most novel ideas of the volume. For this reason it is written in a tentative introductory manner, and will best have served its purpose if it leaves the reader convinced of the importance of the theory involved, and with a desire to follow it further. The next chapter develops in detail the theory of the intersections of manifolds in space of four dimensions. The last chapter collects together various particular theorems, and some easy applications of foregoing theory. Only want of space has led to the exclusion from the volume of many other results which are of interest.

I should like to give expression to my sense of how much this, and preceding volumes, owe to those who have been students with me during their composition; my experience has been of a remarkable and unremitting keenness in the prosecution of the matters treated. Without this encouragement and co-operation, I might not have persevered in the formulation of the ideas, especially in these last two volumes. But besides this personal

vi

Preface

reference, I would add that it is clear that the purely geometrical and descriptive aspects of the subject are felt by many of our students to offer a discipline which is a welcome complement to others which are open to them.

And, I would repeat, readers of these volumes are under much obligation to the staff of the University Press for the trouble and attention with which the printing has been executed.

H. F. B.

5 October 1933

TABLE OF CONTENTS

CHAPTER I. ALGEBRAIC CORRESPONDENCE

	PAGES
Part I. Elementary methods	1 - 46
Function expressing a correspondence with valency	5
Set of coincidences in the correspondence; number of co-	
incidences	8, 9
Coincidences of $r+1$ points in a linear system of freedom r .	10
Valency of direct lateral correspondence	11
Bitangents of a curve from theory of correspondence	13, 14
Ruled surface by joins of corresponding points of two curves	15
Transformation of canonical series; Zeuthen's formula	19
Analytic treatment of correspondence between two curves .	20 - 24
Formula for a curve on a ruled surface	25
Torsal lines, genus of double curve and number of triple	a a aa
Common shards of two survey triangents and surd-incornts	20—28
of a single curve	28-34
Sets common to an involution and a linear series on a curve	35-37
Condition that sets of an involution belong to a linear series	37.38
de Jonguières' formulae for contacts of curves	39-43
Linear spaces incident with a curve in higher space	44-46
Part II. Transcendental methods	46 - 59
Relations for valency matrix in general	46 - 53
Valency matrix is numerical when the curve has general	
moduli	53
Coincidences in a general correspondence	54 - 56
Representation of correspondence by a curve, on the product	
	57 - 59
Part III. Correspondence and defective integrals	5968
Least number of period columns for a defective system of	
integrals	62
Theorem of complementary systems of defective integrals .	62-65
Application to theory of correspondence	65-68
CHAPTER II. SCHUBERT'S CALCULUS.	
MULTIPLE CORRESPONDENCE	
Part I Schubert's methods Preliminary as to	
notations Characters of a manifold	8088
Fundamental conditions for linear spaces (Dir.)	0000
a manifold	6077
The calculus of conditions applied to a line. Examples of	00-11
more general results	77—86

• •

. . . 77—86

viii

Part II. The problem of multiple tangents of a	PAGES
manifold	86—92
Part III. Correspondence of points of two manifolds	92—105
Schubert's notation; application to two and three dimensions	9698
General formula, and examples	99—105
Part IV. Pairs of corresponding linear spaces	105—108
Appendix. Some enumerative formulae	108-111

Contents

CHAPTER III. TRANSFORMATIONS AND INVOLUTIONS FOR THE MOST PART IN A PLANE

Cremona transformations in a plane	•	•	•	112 - 120
Bertini's four types of involution in a plane			•	121-130
The four involutions and rational double planes	•			130, 131
Involutions of sets of more than two points	•		•	131
Surface representing a plane involution cannot irrational pencil	con [.]	tain :	an	138, 139
The rationality of the representative surface involution	of a	pla	ne	139
Number of cyclical sets in a correspondence		•		142 - 145
Note. Surfaces with a pencil of rational curves	•	•		145 - 147

CHAPTER IV. PRELIMINARY PROPERTIES OF SURFACES IN THREE AND FOUR DIMENSIONS

Elementary properties for general surface. Jacobian of a net					
of curves thereon			148 - 156		
The surface with a double curve. Salmon's formula	е.		157 - 169		
Surfaces in space of four dimensions			169 - 175		
Note I. In regard to pinch points			176 - 180		
Note II. Some formulae given by Noether			180, 181		

CHAPTER V. INTRODUCTION TO THE THEORY OF THE INVARIANTS OF BIRATIONAL TRANSFORMATION OF A SURFACE, PARTICULARLY IN SPACE OF THREE DIMENSIONS

Preliminary; a general survey	•	182 - 185
Definition and illustration of the invariant I	•	185 - 189
Definition of I in terms of an irrational pencil of curves		1 89—191
Introductory definition of the invariant ω		191—198
Effect of isolated nodal points of the surface upon	the	
definition of the invariants		198 - 200

Contents

		PAGES
Applications to easy cases	•	201206
Sketch of the proof of the invariance of I	•	206 - 214
The invariance of ω in a birational transformation \cdot .		214, 215
The canonical system of curves of a surface	•	215 - 217
The modification of the canonical system in a biratio	nal	
transformation	•	217 - 221
Return to the definition of the invariant ω	•	221 - 224
The class of immersion and the canonical number of a cu	rve	
on a surface	•	225
The computed characters of an exceptional curve .	•	225, 226
The modification of the invariant ω in a birational tra	ns-	
formation	•	226
Note I. Examination of fifteen examples cited by Noet	her	226 - 232
Note II. The adjoint surfaces of a given surface; the	ex-	
ceptional curves	•	232 - 237
Note III. The birational transformation of the Kummer a	$\mathbf{n}\mathbf{d}$	
Weddle surfaces	•	237 - 240
Note IV. Miscellaneous examples	•	240, 241

CHAPTER VI. SURFACES AND PRIMALS IN FOUR DIMENSIONS. FORMULAE FOR INTERSECTIONS

The chord curve and	trisec	ant c	urve	for a	ı surf	ace i	n fou	ır	
dimensions. Ratio	onal su	urface	es	•	•	•	•		242 - 247
Intersections of loci in s	space	of fou	ır din	nensio	ons, in	trod	uctor	у	247, 248
Residual intersection o	f thre	e prii	mals [.]	with	a com	nmon	curv	'e	248 - 251
Residual intersection of	of two	surfa	aces v	with a	a com	mon	curv	re	251 - 255
Residual intersection	of a	prima	al and	las	urfac	e hav	ving	a	955957
Residual intersection	· of tw	• o pri	• male	havi	• na 9	• curf	ane i	, n	200201
common .		• pri	•	• •		•	•••••	•	257-263
The postulation of a su	irface	for p	rimal	s con	tainir	ıg it	•	•	263 - 266
Residual intersection of	of thi	ree pr	rimals	s hav	ing a	surf	ace i	n	
common .	•	•	•	•	•	•	•	•	266 - 268
Various examples	•	•	•	•	•	•	•	•	268 - 270

CHAPTER VII. ILLUSTRATIVE EXAMPLES AND PARTICULAR THEOREMS

Particular examples of intersections	•	•	271 - 282
The surface representing pairs of points of one or two	curv	es	282 - 294
Note on the multiple correspondence of two surfaces		•	294, 295
On complete sections of a non-singular primal .	•	•	295 - 298
Miscellaneous theorems and examples	•	•	298-300
INDEX	•	•	301-308