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350.

NOTE ON BESSEL'S FUNCTIONS AS APPLIED TO THE
VIBRATIONS OF A CIRCULAR MEMBRANE.

[ Philosophical Magazine, Vol. XxX1. pp. 53—58, 1911.]

It often happens that physical considerations point to analytical con-
clusions not yet formulated. The pure mathematician will admit that
arguments of this kind are suggestive, while the physicist may regard them
as conclusive.

The first question here to be touched upon relates to the dependence of
the roots of the function J,(2) upon the order n, regarded as susceptible of
continuous variation. It will be shown that each root increases continually
with n.

Let us contemplate the transverse vibrations of a membrane fixed along
the radii 6 =0 and 6=/ and also along the circular arc r=1. A typical
simple vibratiom is expressed by *

w=J,(z7r). sin n . cos (zif)t),

where zif) is a finite root of J, (2)=0, and n==/B. Of these finite roots the

lowest zi‘l) gives the principal vibration, 7.e. the one without internal circular
(s)

. the number of internal nodal

nodes. For the vibration corresponding to z
circles is s — 1.

As prescribed, the vibration (1) has no internal nodal diameter. It might
be generalized by taking n=um/8, where » is an integer; but for our
purpose nothing would be gained, since B is at disposal, and a suitable
reduction of B8 comes to the same as the introduction of ».

In tracing the effect of a diminishing B it may suffice to commence at
B=m, or n=1. The frequencies of vibration are then proportional to the
roots of the function J,. The reduction of B is supposed to be effected by

* Theory of Sound, §§ 205, 207.
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2 NOTE ON BESSEL'S FUNCTIONS AS APPLIED (850

increasing without limit the potential energy of the displacement (w) at
every point of the small sector to be cut off. We may imagine suitable
springs to be introduced whose stiffness is gradually increased, and that
without limit. During this process every frequency originally finite must
increase*, finally by an amount proportional to d8; and, as we know, no zero
root can become finite. Thus before and after the change the finite roots
correspond each to each, and every member of the latter series exceeds the
corresponding member of the former.

As B continues to diminish this process goes on until when 3 reaches §m,
n again becomes integral and equal to 2. We infer that every finite root of
J, exceeds the corresponding finite root of J;. In like manner every finite
root of J; exceeds the corresponding root of J,, and so ont.

I was led to consider this question by a remark of Gray and Mathews}—
“It seems probable that between every pair of successive real roots of J,
there is exactly one real root of J,,. It does not appear that this has been
strictly proved ; there must in any case be an odd number of roots in the
interval.” The property just established seems to allow the proof to be
completed.

As regards the latter part of the statement, it may be considered to be
a consequence of the well-known relation

Joir (2) = an (2) =T (). e (2)

When J,, vanishes, J,, has the opposite sign to J,,', both these quantities
being finite§. But at consecutive roots of J,, J,’ must assume opposite signs,
and so therefore must J,,,. Accordingly the number of roots of J,,, in the
interval must be odd.

The theorem required then follows readily. For the first root of J,i,
must lie between the first and second roots of J,. We have proved that
it exceeds the first root. If it also exceeded the second root, the interval
would be destitute of roots, contrary to what we have just seen. In like
manner the second root of J,,, lies between the second and third roots of
Jn, and so on.  The roots of J,4, separate those of J, .

* Loc. cit. §§ 88, 92a.

+ [1915. Similar arguments may be applied to tesseral spherical harmonics, proportional to
cos s¢, where ¢ denotes longitude, of fixed order n and continuously variable s.]

1 Bessel's Functions, 1895, p. 50.

§ If J,,, Ju4; could vanish together, the sequence formula, (8) below, would require that every
succeeding order vanish also. This of gourse is impossible, if only because when = is great the
lowest root of J,, is of order of magnitude n.

{I I have since found in Whittaker’s Modern Analysis, § 152, another proof of this proposition,
attributed to Gegenbauer (1897).
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1911] TO THE VIBRATIONS OF A CIRCULAR MEMBRANE 3

The physical argument may easily be extended to show in like manner
that all the finite roots of J,'(z) increase continually with n. For this
purpose it is only necessary to alter the boundary condition at =1 so as to
make dw/dr = 0 instead of w=0. The only difference in (1) is that z(:) now
denotes a root of J, (2)=0. Mechanically the membrane is fixed as before
along 6 =0, § =3, but all points on the circular boundary are free to slide
transversely. The required conclusion follows by the same argument as was
applied to J,.

It 1s also true that there must be at least one root of J',,, between any
two consecutive roots of JJ,, but this is not so easily proved as for the original
functions. If we differentiate (2) with respect to z and then eliminate .J,
between the equation so obtained and the general differential equation, viz.

173 1 7 n2
g, +;J,,+(1—?>J,,=o, ..................... (3)
we find

n*\ n , n® +
(1—;;) /n+1+‘;3(n2—1_22)Jn +<1— Z2

”) JJ =0, ..(4)

In (4) we suppose that z is a root of J,/, so that J,’=0. The argument
then proceeds as before if we can assume that 22—n? and 22— n (n + 1) are
both positive. Passing over this question for the moment, we notice that
Ji" and J',,, have opposite signs, and that both functions are finite. In fact
if J,” and J, could vanish together, so also by (3) would J,,, and again by
(2) Ju415 and this we have already seen to be impossible.

At consecutive roots of J/, J,,” must have opposite signs, and therefore
dlso J'p4.  Accordingly there must be at least one root of J ‘we1 between
consecutive roots of J;,. It follows as before that the roots of J ‘ni1 S€parate
those of .J,,".

It remains to prove that z* necessarily exceeds n (% +1). That 2* exceeds
72 is well known*, but this does not suffice. We can obtain what we require
from a formula given in Theory of Sound, 2nd ed. § 339. If the finite roots
taken in order be 2, 2,, ... 2;..., We may write

log J' (2) = const. + (n — 1) log z + 3 log (1 — 2%/2,2),

the summation including all finite values of z;; or on differentiation with

respect to z
Ju' (@) _n—1_ 52

I (2) =z 2 — 22

This holds for all values of z. If we put 2z =n, we get

* Riemann's Partielle Differentialgleichungen ; Theory of Sound, § 210.
1—-2
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4 NOTE ON BESSEL'S FUNCTIONS AS APPLIED [350

since. by (3)
S (m) =T (n) =—nt

In (5) all the denominators are positive, We deduce

22— n? z2t—n? zP—-n?

=1+
2n 2t—m? " z?—n?

+...>1; (6)

and therefore
22>+ 2n>n(n +1)

Our theorems are therefore proved.
If a closer approximation to z? is desired, it may be obtained by sub-

stituting on the right of (6) 2n for z?—#* in the numerators and neglecting
n2 1n the denominators. Thus

2 __n2
SN | +2n (2 20+ 00)
2n
>14+2n5 2+ 224270 + ... . .
! ? ? n(n+2)
Now, as is easily proved from the ascending series for J,,,
L 2 b
FARRE Nl A T 4n(n+1)’
so that finally
n3
2 >n? T i aeeeeeaeeasiceae 7
2 >n+2n+(n+l)(n+2). ...... (7N

When = is very great, it will follow from (7) that 2> > n*+ 3n. However
the approximation is not close, for the ultimate form is*

22 =n?+[16130] nés.
As has been mentioned, the sequence formula

—2zll In (2)= Tn1(2) + T (2) covinininnine, 8)

prohibits the simultaneous évanescence of J,_, and J,, or of J,; and Jp4,.
The question arises—can Bessel’s functions whose orders (supposed integral)
differ by more than 2 vanish simultaneously'? If we change n into n 41
in (8) and then eliminate J,, we get

{M (n+1)

Zz

2
- 1} s = Ja + 7” ey eoereeerereens 9)

from which it appears that if J,_, and J,, vanish simultaneously, then either
Jus =0, which is impossible, or 22 = 4n (n +1). Any common root of J, ;
and J,.. must therefore be such that its square is an integer.

* Phil. Mag. Vol. xx. p. 1003, 1910, equation (8). [1913. A correction is here infroduced.
See Nicholson, Phil. Mag. Vol. xxv. p. 200, 1913.]
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1911] TO THE VIBRATIONS OF A CIRCULAR MEMBRANE 5

Pursuing the process, we find that if J,_,, J,.; have a common root z,
then

@Grn+l)22=4dn(n+1)(n+2),

so that 2* is rational. And however far we go, we find that the simultaneous
evanescence of two Bessel’s functions requires that the common root be such
that 2° satisfies an algebraic equation whose coefficients are integers, the
degree of the equation rising with the difference in order of the functions.
If, as seems probable, a root of a Bessel's function cannot satisfy an
integral algebraic equation, it would follow that no two Bessel’s functions

have a common root. The question seems worthy of the attention of
mathematicians.
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351.

HYDRODYNAMICAL NOTES.
[Philosophical Magazine, Vol. XXI. pp. 177—195, 1911.]

Potential and Kinetic Energies of Wave Motion—Waves moving into Shallower
Water. —Concentrated Initial Disturbance with inclusion of Capillarity.—Periodic Waves
in Deep Water advancing without change of Type.—Tide Races.—Rotational Fluid Motion
in a Corner.—Steady Motion in a Corner of Viscous Fluid.

In the problems here considered the fluid is regarded as incompressible,
and the motion is supposed to take place in two dimensions.

Potential and Kinetic Energies of Wave Motion.

When there is no dispersion, the energy of a progressive wave of any
form is half potential and half kinetic. Thus in the case of a long wave in
shallow water, “if we suppose that initially the surface is displaced, but that
the particles have no velocity, we shall evidently obtain (as in the case of
sound) two equal waves travelling in opposite directions, whose total energies
are equal, and together make up the potential energy of the original dis-
placement. Now the elevation of the derived waves must be half of that of
the original displacement, and accordingly the potential energies less in the
ratio of 4 : 1. Since therefore the potential energy of each derived wave is
one quarter, and the total energy one half that of the original displacement,
it follows that in the derived wave the potential and kinetic energies are
equal ” *,

The assumption that the displacement in each derived wave, when
separated, is similar to the original displacement fails when the medium is
dispersive. The equality of the two kinds of energy in an infinite pro-
gressive train of simple waves may, however, be established as follows.

* “On Waves,” Phil, Mag. Vol. 1. p. 257 (1876); Scientific Papers, Vol. 1. p. 254.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781108005470
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-108-00547-0 - Scientific Papers, Volume 6: 1911-1919
Baron John William Strutt Rayleigh

Excerpt

More information

1911] HYDRODYNAMICAL NOTES 7

Consider first an infinite series of simple stationary waves, of which the
energy is at. one moment wholly potential and [a quarter of] a period later
wholly kinetic. If ¢ denote the time and E the total energy, we may write

K.E.= E sin? nt, P.E. = E cos? nt.

Upon this superpose a similar system, displaced through a quarter wave-
length in space and through a quarter period in time. For this, taken by
itself, we should have

K.E = FE cos?nt, P.E. = E sin®nt.

And, the vibrations being conjugate, the potential and kinetic energies of
the combined motion may be found by simple addition of the components.
and are accordingly independent of the time, and each equal to . Now the
resultant motion is a simple progressive train, of which the potential and
kinetic energies are thus seen to be equal.

A similar argument is applicable to prove the equality of energies in the
motion of a simple conical pendulum.

It is to be observed that the conclusion is in general limited to vibrations
which are infinitely small.

Waves moving tnto Shallower Water.

The problem proposed is the passage of an infinite train of simple
infinitesimal waves from deep water into water which shallows gradually
in such a manner that there is no loss of energy by reflexion or otherwise.
At any stage the whole energy, being the double of the potential energy, is
proportional per unit length to the square of the height; and for motion in
two dimensions the only remaining question for our purpose is what are to be
regarded as corresponding lengths along the direction of propagation.

In the case of long waves, where the wave-length (A)is long in comparison
with the depth () of the water, corresponding parts are as the velocities of
propagation ( V), or since the periodic time (7)1is constant, as A. Conservation
of energy then requires that

(height)® x V =constant ; .......c.cccoevninnnnee )]
or since V varies as I3, height varies as { “1*,

But for a dispersive medium corresponding parts are not proportional
to V, and the argument requires modification. A uniform regime being
established, what we are to equate at two separated places where the waves
are of different character is the rate of propagation of energy through these
places. It is a general proposition that in any kind of waves the ratio of the
energy propagated past a fixed point in unit time to that resident in unit

* Loc. cit. p. 255,
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8 HYDRODYNAMICAL NOTES [351

length is U, where U is the group-velocity, equal to do/dk, where o = 2x/r,
k=2s/r*. Hence in our problem we must take

height variesas U™%, ...........ccccoeeeennann. (2)

which includes the former result, since in a non-dispersive medium U = V.
For waves in water of depth /,

ot=gktanh kl, ...l (3)

whence 20U/g =tanh kl + &kl (1 —tanh*kl). .................. 4)

As the wave progresses, ¢ remains constant, (3) determines %k in terms
of I, and U follows from (4). If we write

G¥lg=U, i, (5)

(8) becomes El.tanhkl=0, ..., (6)
and (4) may be written

20Ufg =kl + (U =13kl .ccoveiiiiiian, N

By (6), (7) U is determined as a function of I’ or by (5) of ..

If %I, and therefore I, is very great, ki =1, and then by (7) if U, be the
corresponding value of U,

and in general

UJUy=kl + (U = UDRL eovereeeeeeereereranne. (9)

Equations (2), (5), (6), (9) may be regarded as giving the solution of the
problem in terms of a known ¢. It is perhaps more practical to replace o in
(5) by A, the corresponding wave-length in a great depth. The relation
between ¢ and A, being ¢* = 2mwg/x,, we find in place of (5)

V=20l = Kole  eoeveeeeeeeeieee (10)

Starting in (10) from A, and ! we may obtain I, whence (6) gives kI, and
(9) gives U/U,. But in calculating results by means of tables of the hyper-
bolic functions it is more convenient to start from k. We find

kl 4 U}U, kl v UjU,
© w | 1000 6 322 964
10 kL 1000 5 231 ‘865
5 4:999 | 1001 -4 ‘152 722
2 1928 | 1-105 3 087 566
15 | 1358 | 1176 2 039 -390
10 ‘762 1-182 1 ‘010 200

8 531 | 1110 by (k1Y 2k
77 493 | 1-048 — — —

* Proc. Lond. Math. Soc. Vol. 1x. 1877 ; Scientific Papers, Vol. 1. p. 326.
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1911] HYDRODYNAMICAL NOTES 9

It appears that U/U, does not differ much from unity between I’ = 23 and
U =, so that the shallowing of the water does not at first produce much
effect upon the height of the waves. It must be remembered, however, that
the wave-length is diminishing, so that waves, even though they do no more
than maintain their height, grow steeper.

Concentrated Initial Disturbance with inclusion of Copillarity.

A simple approximate treatment of the general problem of initial linear
disturbance is due to Kelvin*. We have for the elevation # at any point
and at any time ¢

7;=lj cos kz cos ot dk
T™J0

———lj cos (kx — ot) dk + 1

2‘7]‘ [} ﬂ

in which ¢ is a function of %, determined by the character of the dispersive
medium—expressing that the initial elevation (t = 0) is concentrated at the
origin of . When ¢ is great, the angles whose cosines are to be integrated
will in gencral vary rapidly with &, and the corresponding parts of the
integral contribute little to the total result. The most important part of the
range of integration is the neighbourhood of places where kz + ot is stationary
with respect to k, i.e. where

[ ‘cos (ko + oty dk, ... (1)
(14

do
witm‘:=0. ................................. (2)

In the vast majority of practical applications do/dk is positive, so that if
z and ¢ are also positive the second integral in (1) makes no sensible contri-
bution. The result then depends upon the first integral, and only upon such
parts of that as lie in the neighbourhood of the value, or values, of k& which
satisfy (2) taken with the lower sign. If % be such a value, Kelvin shows
that the corresponding term in 7 has an expression equivalent to

_cos (ayt — kyw —}m)

N S bt dra R > e (3)

o, being the value of & corresponding to k.

In the case of deep-water waves where o = 4/(gk), there is only one pre-
dominant value of k for given values of # and ¢, and (2) gives

ke, = gt?/4a®, =22, i, )
making ot~k —tr=gtfde -}, oo (5)
4 ¢
: =9 g _ T
and finally 7= ey cos {4w 4(} 3 eeeerraerieeiseaeeienies (6)

the well-known formula of Cauchy and Poisson.

* Proc. Roy. Soc. Vol. x1i1. p. 80 (1887) ; Math. and Phys. Papers, Vol. 1v. p. 303.
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10 HYDRODYNAMICAL NOTES [351

In the numerator of (3) o, and %, are functions of # and ¢. If we inquire
what change (A) in # with ¢ constant alters the angle by 2, we find

do\ dk)
so that by (2) A =2x/k,, t.e. the effective wave-length A coincides with that
of the predominant component in the original integral (1), and a like result
holds for the periodic time*. Again, it follows from (2) that &,z — o1t in (3)

may be replaced by [ kydz, as is exemplified in (4) and (6).

When the waves move under the influence of a capillary tension 7' in
addition to gravity,

=gk + Thlp, vivviiiiiiiiiiieenn (7
p being the density, and for the wave-velocity (V)
Vi=o?kt=glk+ Tkip, «cocoovvviniiiinni, €))

as first found by Kelvin. Under these circumstances V has a minimum
value when

= gpIT. oo (9)

The group-velocity U is equal to da/dk, or to d (kV)/dk; so that when V'
has a minimum value, U and V coincide. Referring to this, Kelvin towards
the close of his paper remarks “ The working out of our present problem for
this case, or any case in which there are either minimums or maximums, or
both maximums and minimums, of wave-velocity, is particularly interesting,
but time does not permit of its being included in the present communication.”

A glance at the simplified form (3) shows, however, that the special case
arises, not when 7 is a minimum (or maximum), but when U is so, since then
dPo [dk? vanishes. As given by (3), » would become infinite—an indication
that the approximation must be pursued. If k=% + £ we have in general
in the neighbourhood of k&,

do t do, ¢ d’c
In the present case where the term in £ disappears, as well as that in £, we
get in place of (3) when ¢ is great
_ cos(byw—ayt) [+
77 9w 3t okt w
varying as ¢~ ¥ instead of as £73,

The definite integral is included in the general form

o
( cos oa™. do = 2 r (1) COS o ) e (12)
m- A\m m

W w00

* Cf. Green, Proc. Roy. Soc. Ed. Vol. xxix. p. 445 (1909).
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