CONTENTS.

[An Asterisk means that the paper is not printed in full.]

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>799</td>
<td>On curvilinear coordinates</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Quart. Math. Journ., t. xix. (1883), pp. 1—22</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>Note on the standard solutions of a system of linear equations</td>
<td>19</td>
</tr>
<tr>
<td>801</td>
<td>On seminvariants</td>
<td>22</td>
</tr>
<tr>
<td>802</td>
<td>Note on Captain MacMahon's paper “On the differential equation $X^{-\frac{1}{4}}dx + Y^{-\frac{1}{4}}dy + Z^{-\frac{1}{4}}dz = 0$”</td>
<td>30</td>
</tr>
<tr>
<td>803</td>
<td>On Mr Anglin's formula for the successive powers of the root of an algebraical equation</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Quart. Math. Journ., t. xix. (1883), pp. 223, 224</td>
<td></td>
</tr>
<tr>
<td>804</td>
<td>On the elliptic-function solution of the equation $x^2 + y^2 - 1 = 0$</td>
<td>35</td>
</tr>
<tr>
<td>805</td>
<td>Note on Abel's theorem</td>
<td>38</td>
</tr>
<tr>
<td>806</td>
<td>Determination of the order of a surface</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xii. (1883), pp. 29—32</td>
<td></td>
</tr>
<tr>
<td>807</td>
<td>A proof of Wilson's theorem</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xii. (1883), p. 41</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>808</td>
<td>Note on a form of the modular equation in the transformation of the third order</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xii. (1883), pp. 173, 174</td>
<td></td>
</tr>
<tr>
<td>809</td>
<td>Schröter's construction of the regular pentagon</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xii. (1883), p. 177</td>
<td></td>
</tr>
<tr>
<td>810</td>
<td>Note on a system of equations</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xii. (1883), pp. 191, 192</td>
<td></td>
</tr>
<tr>
<td>811</td>
<td>On the linear transformation of the theta-functions</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xiii. (1884), pp. 54—60</td>
<td></td>
</tr>
<tr>
<td>812</td>
<td>On Archimedes' theorem for the surface of a cylinder</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xiii. (1884), pp. 107, 108</td>
<td></td>
</tr>
<tr>
<td>813</td>
<td>[Note on Mr Griffiths' paper "On a deduction from the elliptic-integral formula $y = \sin(A + B + C + \ldots)$"]</td>
<td>58</td>
</tr>
<tr>
<td>814</td>
<td>On double algebra</td>
<td>60</td>
</tr>
<tr>
<td>815</td>
<td>The binomial equation $x^n - 1 = 0$; quinquisection. Second part</td>
<td>72</td>
</tr>
<tr>
<td>816</td>
<td>On the bitangents of a plane quartic</td>
<td>74</td>
</tr>
<tr>
<td>817</td>
<td>On the sixteen-nodal quartic surface</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Crelle's Journal der Mathem., t. xciv. (1883), pp. 270—272</td>
<td></td>
</tr>
<tr>
<td>818</td>
<td>Note on hyperelliptic integrals of the first order</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Crelle's Journal der Mathem., t. xcviii. (1885), pp. 95, 96</td>
<td></td>
</tr>
<tr>
<td>819</td>
<td>On two cases of the quadric transformation between two planes</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Johns Hopkins University Circulars, No. 13 (1882), pp. 178, 179</td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>On a problem of analytical geometry</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Johns Hopkins University Circulars, No. 15 (1882), p. 209</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>821. On the geometrical representation of an equation between two variables</td>
</tr>
<tr>
<td>822. On associative imaginaries</td>
</tr>
<tr>
<td>Johns Hopkins University Circulars, No. 15 (1882), pp. 211, 212</td>
</tr>
<tr>
<td>823. On the geometrical interpretation of certain formulae in elliptic functions</td>
</tr>
<tr>
<td>Johns Hopkins University Circulars, No. 17 (1882), p. 238</td>
</tr>
<tr>
<td>824. Note on the formula of trigonometry</td>
</tr>
<tr>
<td>Johns Hopkins University Circulars, No. 17 (1882), p. 241</td>
</tr>
<tr>
<td>825. A memoir on the Abelian and Theta Functions</td>
</tr>
<tr>
<td>826. Note on a partition series</td>
</tr>
<tr>
<td>American Journal of Mathematics, t. vi. (1884), pp. 63, 64</td>
</tr>
<tr>
<td>827. On the non-Euclidian plane geometry</td>
</tr>
<tr>
<td>828. A memoir on semi-invariants</td>
</tr>
<tr>
<td>American Journal of Mathematics, t. vii. (1885), pp. 1—25</td>
</tr>
<tr>
<td>829. Tables of the symmetric functions of the roots, to the degree 10, for the form $1 + bx + \frac{cx^2}{1 \cdot 2} + \ldots = (1 - ax)(1 - bx)(1 - bx) \ldots$</td>
</tr>
<tr>
<td>American Journal of Mathematics, t. vii. (1885), pp. 47—56</td>
</tr>
<tr>
<td>830. Non-unitary partition tables</td>
</tr>
<tr>
<td>American Journal of Mathematics, t. vii. (1885), pp. 57, 58</td>
</tr>
<tr>
<td>831. Seminvariant tables</td>
</tr>
<tr>
<td>American Journal of Mathematics, t. vii. (1885), pp. 59—73</td>
</tr>
<tr>
<td>832. Note on an apparent difficulty in the theory of curves, when the coordinates of a point are given as functions of a variable parameter</td>
</tr>
<tr>
<td>Messenger of Mathematics, t. xiv. (1885), pp. 12—14</td>
</tr>
<tr>
<td>C. XII.</td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>833</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>834</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>835</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>836</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>837</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>838</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>839</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>840</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>841</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>842</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>843</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>844</td>
</tr>
<tr>
<td>845</td>
</tr>
<tr>
<td>846</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CONTENTS.</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>847. On the theory of seminvariants</td>
</tr>
<tr>
<td>848. On the transformation of the double theta-functions</td>
</tr>
<tr>
<td>849. On the invariants of a linear differential equation</td>
</tr>
<tr>
<td>850. On linear differential equations</td>
</tr>
<tr>
<td>851. On linear differential equations: the theory of decomposition</td>
</tr>
<tr>
<td>Quart. Math. Journ., t. xxi. (1886), pp. 331—335</td>
</tr>
<tr>
<td>852. Note sur le mémoire de M. Picard “Sur les intégrales de différentielles totales algébriques de première espèce”</td>
</tr>
<tr>
<td>Bull. des Sciences Math., 2me Sér., t. x. (1886), pp. 75—78</td>
</tr>
<tr>
<td>853. Note on a formula for Δ^n(0)/n! when n, i are very large numbers</td>
</tr>
<tr>
<td>854. An algebraical transformation</td>
</tr>
<tr>
<td>Messenger of Mathematics, t. xv. (1886), pp. 58, 59</td>
</tr>
<tr>
<td>855. Solution of (a, b, c, d)=(a', b', c', d')</td>
</tr>
<tr>
<td>Messenger of Mathematics, t. xv. (1886), pp. 59—61</td>
</tr>
<tr>
<td>856. Note on a cubic equation</td>
</tr>
<tr>
<td>Messenger of Mathematics, t. xv. (1886), pp. 62—64</td>
</tr>
<tr>
<td>857. Analytical geometrical note on the conic</td>
</tr>
<tr>
<td>Messenger of Mathematics, t. xv. (1886), p. 192</td>
</tr>
<tr>
<td>858. Comparison of the Weierstrassian and Jacobian elliptic functions</td>
</tr>
<tr>
<td>Messenger of Mathematics, t. xvi. (1887), pp. 129—132</td>
</tr>
<tr>
<td>859. On the complex of lines which meet a unicursal quartic curve</td>
</tr>
<tr>
<td>b 2</td>
</tr>
</tbody>
</table>
CONTENTS.

860. On Briot and Bouquet's theory of the differential equation
\[F(u, \frac{du}{ds}) = 0 \] 432

861. Note on a formula relating to the zero-value of a theta-function 442
Crelle's Journal der Mathem., t. c. (1887), pp. 87, 88

862. Note on the theory of linear differential equations 444
Crelle's Journal der Mathem., t. c. (1887), pp. 286—295

863. Note on the theory of linear differential equations 453
Crelle's Journal der Mathem., t. ci. (1887), pp. 209—213

864. On Rudio's inverse centro-surface 457

865. On multiple algebra ... 459

866. Note on Kiepert's L-equations, in the transformation of elliptic
functions ... 490
Mathematische Annalen, t. xxx. (1887), pp. 75—77

867. Note on the Jacobian sextic equation 493
Mathematische Annalen, t. xxx. (1887), pp. 78—84

868. On the intersection of curves 500
Mathematische Annalen, t. xxx. (1887), pp. 85—90

869. On the transformation of elliptic functions 505

870. On the transformation of elliptic functions (sequel) 535
American Journal of Mathematics, t. x. (1888), pp. 71—93

871. A case of complex multiplication with imaginary modulus
arising out of the cubic transformation in elliptic functions 556

872. On the finite number of the covariants of a binary quantic .. 558
Mathematische Annalen, t. xxxiv. (1889), pp. 319, 320
CONTENTS.

873. System of equations for three circles which cut each other at given angles

 Messenger of Mathematics, t. xvii. (1888), pp. 18—21

 559

874. Note on the Legendrian coefficients of the second kind

 Messenger of Mathematics, t. xvii. (1888), pp. 21—23

 562

875. On the system of three circles which cut each other at given angles and have their centres in a line

 Messenger of Mathematics, t. xvii. (1888), pp. 60—69

 564

876. On systems of rays

 Messenger of Mathematics, t. xvii. (1888), pp. 73—78

 571

877. Note on the two relations connecting the distances of four points on a circle

 Messenger of Mathematics, t. xvii. (1888), pp. 94, 95

 576

878. Note on the anharmonic ratio equation

 Messenger of Mathematics, t. xvii. (1888), pp. 95, 96

 578

879. Note on the differential equation \(\frac{dx}{\sqrt{(1-x^2)}} + \frac{dy}{\sqrt{(1-y^2)}} = 0 \)

 Messenger of Mathematics, t. xviii. (1889), p. 90

 580

880. Note on the relation between the distance of five points in space

 Messenger of Mathematics, t. xviii. (1889), pp. 100—102

 581

881. On Hermite's H-product theorem

 Messenger of Mathematics, t. xviii. (1889), pp. 104—107

 584

882. A correspondence of confocal Cartesians with the right lines of a hyperboloid

 Messenger of Mathematics, t. xviii. (1889), pp. 128—130

 587

883. Analytical formula in regard to an octad of points

 Messenger of Mathematics, t. xviii. (1889), pp. 149—152

 590

884. Note sur les surfaces minima et le théorème de Joachimsthal

 Comptes Rendus, t. cvi. (1888), pp. 995, 996

 594
CONTENTS.

885. On the Diophantine relation, \(y^a + y^b = \text{Square} \) 596

886. On the surfaces with plane or spherical curves of curvature . 601
 293—306

887. On the theory of groups 639
 American Journal of Mathematics, t. xi. (1889), pp. 139—157