From its pre-historic roots in simple counting to the algorithms powering modern desktop computers, from the genius of Archimedes to the genius of Einstein, advances in mathematical understanding and numerical techniques have been directly responsible for creating the modern world as we know it. This series will provide a library of the most influential publications and writers on mathematics in its broadest sense. As such, it will show not only the deep roots from which modern science and technology have grown, but also the astonishing breadth of application of mathematical techniques in the humanities and social sciences, and in everyday life.

The Collected Mathematical Papers

Arthur Cayley (1821-1895) was a key figure in the creation of modern algebra. He studied mathematics at Cambridge and published three papers while still an undergraduate. He then qualified as a lawyer and published about 250 mathematical papers during his fourteen years at the Bar. In 1863 he took a significant salary cut to become the first Sadleirian Professor of Pure Mathematics at Cambridge, where he continued to publish at a phenomenal rate on nearly every aspect of the subject, his most important work being in matrices, geometry and abstract groups. In 1882 he spent five months at Johns Hopkins University, and in 1883 became president of the British Association for the Advancement of Science. Publication of his Collected Papers - 967 papers in 13 volumes plus an index volume - began in 1889 and was completed after his death under the editorship of his successor in the Sadleirian Chair. This volume contains 89 papers mostly published between 1883 and 1889.
Cambridge University Press has long been a pioneer in the reissuing of out-of-print titles from its own backlist, producing digital reprints of books that are still sought after by scholars and students but could not be reprinted economically using traditional technology. The Cambridge Library Collection extends this activity to a wider range of books which are still of importance to researchers and professionals, either for the source material they contain, or as landmarks in the history of their academic discipline.

Drawing from the world-renowned collections in the Cambridge University Library, and guided by the advice of experts in each subject area, Cambridge University Press is using state-of-the-art scanning machines in its own Printing House to capture the content of each book selected for inclusion. The files are processed to give a consistently clear, crisp image, and the books finished to the high quality standard for which the Press is recognised around the world. The latest print-on-demand technology ensures that the books will remain available indefinitely, and that orders for single or multiple copies can quickly be supplied.

The Cambridge Library Collection will bring back to life books of enduring scholarly value across a wide range of disciplines in the humanities and social sciences and in science and technology.
MATHEMATICAL PAPERS.
London: O. J. Clay and Sons,
Cambridge University Press Warehouse,
Ave Maria Lane.
Glasgow: 263, Argyle Street.

Leipzig: F. A. Brockhaus.
THE COLLECTED

MATHEMATICAL PAPERS

OF

ARTHUR CAYLEY, Sc.D., F.R.S.,

LATE SADLERIAN PROFESSOR OF PURE MATHEMATICS IN THE UNIVERSITY OF CAMBRIDGE.

VOL. XII.

CAMBRIDGE:

AT THE UNIVERSITY PRESS.

1897.

[All Rights reserved.]
ADVERTISEMENT.

The present volume contains 89 papers, numbered 799 to 887, published for the most part in the years 1883 to 1889.

The Table for the twelve volumes is

<table>
<thead>
<tr>
<th>Vol.</th>
<th>Numbers</th>
<th>1 to 100,</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>II.</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>III.</td>
<td></td>
<td>222</td>
</tr>
<tr>
<td>IV.</td>
<td></td>
<td>299</td>
</tr>
<tr>
<td>V.</td>
<td></td>
<td>383</td>
</tr>
<tr>
<td>VI.</td>
<td></td>
<td>416</td>
</tr>
<tr>
<td>VII.</td>
<td></td>
<td>485</td>
</tr>
<tr>
<td>VIII.</td>
<td></td>
<td>555</td>
</tr>
<tr>
<td>IX.</td>
<td></td>
<td>629</td>
</tr>
<tr>
<td>X.</td>
<td></td>
<td>705</td>
</tr>
<tr>
<td>XI.</td>
<td></td>
<td>798</td>
</tr>
<tr>
<td>XII.</td>
<td></td>
<td>887</td>
</tr>
</tbody>
</table>

A. R. FORSYTH.

19 May, 1897.
CONTENTS.

[An Asterisk means that the paper is not printed in full.]

799. On curvilinear coordinates. 1
 Quart. Math. Journ., t. xix. (1883), pp. 1—22

800. Note on the standard solutions of a system of linear equations 19

801. On seminvariants 22

802. Note on Captain MacMahon's paper "On the differential equation \(X^{-\frac{1}{2}}dx + Y^{-\frac{1}{2}}dy + Z^{-\frac{1}{2}}dz = 0\)". 30

803. On Mr Anglin's formula for the successive powers of the root of an algebraical equation 33
 Quart. Math. Journ., t. xix. (1883), pp. 223, 224

804. On the elliptic-function solution of the equation \(x^2 + y^2 - 1 = 0\) . 35

805. Note on Abel's theorem 38

806. Determination of the order of a surface 42
 Messenger of Mathematics, t. xii. (1883), pp. 29—32

807. A proof of Wilson's theorem 45
 Messenger of Mathematics, t. xii. (1883), p. 41
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>808</td>
<td>Note on a form of the modular equation in the transformation of the third order</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xii. (1883), pp. 173, 174</td>
<td></td>
</tr>
<tr>
<td>809</td>
<td>Schröter’s construction of the regular pentagon</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xii. (1883), p. 177</td>
<td></td>
</tr>
<tr>
<td>810</td>
<td>Note on a system of equations</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xii. (1883), pp. 191, 192</td>
<td></td>
</tr>
<tr>
<td>811</td>
<td>On the linear transformation of the theta-functions</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xiii. (1884), pp. 54–60</td>
<td></td>
</tr>
<tr>
<td>812</td>
<td>On Archimedes’ theorem for the surface of a cylinder</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Messenger of Mathematics, t. xiii. (1884), pp. 107, 108</td>
<td></td>
</tr>
<tr>
<td>813</td>
<td>[Note on Mr Griffiths’ paper “On a deduction from the elliptic-integral formula (y = \sin (A + B + C + \ldots)) ”]</td>
<td>58</td>
</tr>
<tr>
<td>814</td>
<td>On double algebra</td>
<td>60</td>
</tr>
<tr>
<td>815</td>
<td>The binomial equation (x^n - 1 = 0); quinquisection. Second part</td>
<td>72</td>
</tr>
<tr>
<td>816</td>
<td>On the bitangents of a plane quartic</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Crelle’s Journal der Mathem., t. xciv. (1883), pp. 93–115; Camb.</td>
<td></td>
</tr>
<tr>
<td>817</td>
<td>On the sixteen-nodal quartic surface</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Crelle’s Journal der Mathem., t. xciv. (1883), pp. 270–272</td>
<td></td>
</tr>
<tr>
<td>818</td>
<td>Note on hyperelliptic integrals of the first order</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Crelle’s Journal der Mathem., t. xcviii. (1885), pp. 95, 96</td>
<td></td>
</tr>
<tr>
<td>819</td>
<td>On two cases of the quadric transformation between two planes</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Johns Hopkins University Circulars, No. 13 (1882), pp. 178, 179</td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>On a problem of analytical geometry</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Johns Hopkins University Circulars, No. 15 (1882), p. 209</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS.

821. *On the geometrical representation of an equation between two variables* 104

822. *On associative imaginaries* ... 105
 Johns Hopkins University Circulars, No. 15 (1882), pp. 211, 212

823. *On the geometrical interpretation of certain formula in elliptic functions* 107
 Johns Hopkins University Circulars, No. 17 (1882), p. 238

824. *Note on the formula of trigonometry* ... 108
 Johns Hopkins University Circulars, No. 17 (1882), p. 241

825. *A memoir on the Abelian and Theta Functions* ... 109

826. *Note on a partition series* ... 217
 American Journal of Mathematics, t. vi. (1884), pp. 63, 64

827. *On the non-Euclidian plane geometry* ... 220

828. *A memoir on seminvariants* ... 239
 American Journal of Mathematics, t. vii. (1885), pp. 1–25

829. *Tables of the symmetric functions of the roots, to the degree 10, for the form* 1 + bx + cx² + ... = (1 - ax)(1 - bx)(1 - γx)... 263

830. *Non-unitary partition tables* ... 273
 American Journal of Mathematics, t. vii. (1885), pp. 57, 58

831. *Seminvariant tables* ... 275

832. *Note on an apparent difficulty in the theory of curves, when the coordinates of a point are given as functions of a variable parameter* ... 290
 Messenger of Mathematics, t. xiv. (1885), pp. 12–14

C. XII.
CONTENTS.

833. On a formula in elliptic functions 292

Message of Mathematics, t. xiv. (1885), pp. 21, 22

834. On the addition of the elliptic functions 294

Message of Mathematics, t. xiv. (1885), pp. 56—61

835. On Cardan's solution of a cubic equation 299

Message of Mathematics, t. xiv. (1885), pp. 96, 97

836. On the quaternion equation $qQ - Qq' = 0$ 300

Message of Mathematics, t. xiv. (1885), pp. 108—112

837. On the so-called D'Alembert Carnot geometrical paradox . . . 305

Message of Mathematics, t. xiv. (1885), pp. 113, 114

838. On the twisted cubics upon a quadric surface 307

Message of Mathematics, t. xiv. (1885), pp. 129—132

839. On the matrical equation $qQ - Qq' = 0$ 311

Message of Mathematics, t. xiv. (1885), pp. 176—178

840. On Mascheroni's geometry of the compass 314

Message of Mathematics, t. xiv. (1885), pp. 179—181

841. On a differential operator 318

Message of Mathematics, t. xiv. (1885), pp. 190, 191

842. On the value of $\tan(\sin \theta) - \sin(\tan \theta)$ 319

Message of Mathematics, t. xiv. (1885), pp. 191, 192

843. On the quadri-quadric curve in connexion with the theory of elliptic functions 321

Mathematische Annalen, t. xxv. (1885), pp. 152—156

844. On a theorem relating to semiinvariants 326

845. On the orthomorphosis of the circle into the parabola 328

846. A verification in regard to the linear transformation of the theta-functions 337

Quart. Math. Journ., t. xxi. (1886), pp. 77—84
CONTENTS.

847. On the theory of seminvariants 344

848. On the transformation of the double theta-functions . . 358

849. On the invariants of a linear differential equation . . 390

850. On linear differential equations 394

851. On linear differential equations: the theory of decomposition . 403

Quart. Math. Journ., t. xxi. (1886), pp. 331—335

852. Note sur le mémoire de M. Picard “Sur les intégrales de différentielles totales algébriques de première espèce” . 408

Bull. des Sciences Math., 2eme Sér., t. x. (1886), pp. 75—78

853. Note on a formula for \(\Delta^n 0/n^t \) when \(n, i \) are very large numbers . 412

854. An algebraical transformation 416

Messenger of Mathematics, t. xv. (1886), pp. 58, 59

855. Solution of \((a, b, c, d) = (a', b', c', d')\) 418

Messenger of Mathematics, t. xv. (1886), pp. 59—61

856. Note on a cubic equation 421

Messenger of Mathematics, t. xv. (1886), pp. 62—64

857. Analytical geometrical note on the conic 424

Messenger of Mathematics, t. xv. (1886), p. 192

858. Comparison of the Weierstrassian and Jacobian elliptic functions . 425

Messenger of Mathematics, t. xvi. (1887), pp. 129—132

859. On the complex of lines which meet a unicursal quartic curve 428

CONTENTS.

860. On Briot and Bouquets theory of the differential equation
\[F(u, \frac{du}{ds}) = 0 \]

861. Note on a formula relating to the zero-value of a theta-function
Crelle's Journal der Mathehm., t. c. (1887), pp. 87, 88

862. Note on the theory of linear differential equations
Crelle's Journal der Mathem., t. c. (1887), pp. 286—295

863. Note on the theory of linear differential equations
Crelle's Journal der Mathem., t. ci. (1887), pp. 209—213

864. On Rudio's inverse centro-surface

865. On multiple algebra

866. Note on Kiepert's L-equations, in the transformation of elliptic functions
Mathematische Annalen, t. xxx. (1887), pp. 75—77

867. Note on the Jacobian sextic equation
Mathematische Annalen, t. xxx. (1887), pp. 78—84

868. On the intersection of curves
Mathematische Annalen, t. xxx. (1887), pp. 85—90

869. On the transformation of elliptic functions

870. On the transformation of elliptic functions (sequel)
American Journal of Mathematics, t. x. (1888), pp. 71—93

871. A case of complex multiplication with imaginary modulus arising out of the cubic transformation in elliptic functions

872. On the finite number of the covariants of a binary quantic
Mathematische Annalen, t. xxxx. (1889), pp. 319, 320
CONTENTS.

873. System of equations for three circles which cut each other at given angles ... 559
 Messenger of Mathematics, t. xvii. (1888), pp. 18—21

874. Note on the Legendrian coefficients of the second kind ... 562
 Messenger of Mathematics, t. xvii. (1888), pp. 21—23

875. On the system of three circles which cut each other at given angles and have their centres in a line ... 564
 Messenger of Mathematics, t. xvii. (1888), pp. 60—69

876. On systems of rays ... 571
 Messenger of Mathematics, t. xvii. (1888), pp. 73—78

877. Note on the two relations connecting the distances of four points on a circle ... 576
 Messenger of Mathematics, t. xvii. (1888), pp. 94, 95

878. Note on the anharmonic ratio equation ... 578
 Messenger of Mathematics, t. xvii. (1888), pp. 95, 96

879. Note on the differential equation \(\frac{dx}{\sqrt{(1-x^2)}} + \frac{dy}{\sqrt{(1-y^2)}} = 0 \) ... 580
 Messenger of Mathematics, t. xiii. (1889), p. 90

880. Note on the relation between the distance of five points in space ... 581
 Messenger of Mathematics, t. xiii. (1889), pp. 100—102

881. On Hermite's H-product theorem ... 584
 Messenger of Mathematics, t. xiii. (1889), pp. 104—107

882. A correspondence of confocal Cartesians with the right lines of a hyperboloid ... 587
 Messenger of Mathematics, t. xiii. (1889), pp. 128—130

883. Analytical formula in regard to an octad of points ... 590
 Messenger of Mathematics, t. xiii. (1889), pp. 149—152

884. Note sur les surfaces minima et le théorème de Joachimsthal ... 594
 Comptes Rendus, t. cvi. (1888), pp. 995, 996
CONTENTS.

885. On the Diophantine relation, \(z^2 + y^2 = \text{Square} \) 596

886. On the surfaces with plane or spherical curves of curvature 601
 293—306

887. On the theory of groups . 639
 American Journal of Mathematics, t. xi. (1889), pp. 139—157
CLASSIFICATION.

ANALYSIS.

Equations, 801, 803, 835, 855, 856, 867, 878.
Theory of numbers, 807, 815.
Groups, 887.
Quaternions, 836.
Matrices, 839.
Trigonometry, 824, 842.
Symmetric functions, 829, 841.
Partitions, 826, 830.
Invariants and covariants, 800, 801, 828, 831, 844, 847, *872.
Multiple Algebra, 814, 822, 855.
Integral calculus, 852.
Legendre's coefficients, 874.
Finite differences, 853.
Differential equations (general), 802, 860, 879, 885.
Differential equations (linear), 849, 850, 851, 862, 863.
Elliptic functions, 804, 813, 823, 833, 834, 843, 858, 881.
Transformation of elliptic functions, 808, 854, 866, 869, 870, 871.
Abel's theorem, 805.
Abelian functions, 818, 825.
Theta functions, 811, 825, 846, 848, 861.
CLASSIFICATION.

GEOMETRY.

Properties of circles, 873, 875, 877.
Non-Euclidian geometry, 827.
General theory of curves, 820, 832, 868.
Correspondence, 819, 821.
Orthomorphosis, 821, 845.
Plane Quartics, 816.
Groups of points, 880, 883.
General theory of surfaces, 799, 806.
Quadrics, 882.
Quartic surfaces, 817.
Centro-surfaces, 864.
Minimal surfaces, 884.
Rays, 876.
Curves of curvature, 886.
Twisted cubic curves, 838.
Twisted quartic curves, 843, 859.

MISCELLANEOUS, 809, 810, 812, 837, 840, 857.