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PREFACE.

In preparing this version in English of Fourier’s
celebrated treatise on Heat, the translator has followed
faithfully the French original. He has, however, ap-
pended brief foot-notes, in which will be found references
to other writings of Fourier and modern authors on
the subject : these are distinguished by the initials A. F.
The notes marked R. L. E. are taken from pencil me-
moranda on the margin of a copy of the work that
formerly belonged to the late Robert Leslie Ellis,
Fellow of Trinity College, and is now in the possession
of St John’s College. It was the translator's hope to
have been able to prefix to this treatise a Memoir
of Fourier’s life with some account of his writings;
unforeseen circumstances have however prevented its

completion in time to appear with the present work.
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Zpt)=sins [ dagla)sina + sin2e | " da g (a) sin2a+sin 32 [ "da (a) sinda-+ &,

whence 3 ¢( x)= :jsm % ~/:) "daqb(a) sin ia . . . . 184
292, 223. Application of the theorem: from it is derived the remarkable
series,
T 2 . 4 6 8 .
= = . . 188
4cosx_1.3smx+3.5sm 4z + 5 7sm T+ — 79 sin 9z + &e

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9781108001786

Cambridge University Press

978-1-108-00178-6 - The Analytical Theory of Heat
Jean Baptiste Joseph Fourier

Frontmatter

More information

xiv TABLE OF CONTENTS.

PAGE

ART. ) ] ]

994, 295. Second theorem on the development of funetions in trigono-
metrical series:

T =0 . T .
ol = da cos .
5@ 2'_=0 cos ix /(') o €0 iy (a)

Applications : from it we derive the remarkable series

1 ., . 1 ocoslx cos4x_cos6x_&c
ITSmE=5- 13785 5.7 o

190

296930, The preceding theorems are applicable to discontinuous funections,
and solve the problems which are based upon the analysis of Daniel
Bernoulli in the problem of vibrating cords. The value of the series,

. . 1. . 1
sin 2 versin a+ = sin 2 versin 2a -+ -

3 3 gin 3x versin 3a+ &e.,

is g, it we attribute t0 # a quantity greater than 0 and less than a; and

the value of the series is 0, if « is any quantity included between « and .
Application to other remarkable examples; curved lines or surfaces which
coincide in a paxrt of their course, and differ in all the other parts , . 193

931933, Any function whatever, F(z), may be developed in the form

@, COS %+ ¢, €08 22 + &g cos 8z + &e.,

Flr)=4 +§ b, sinx+ b, sin 2%+, sin 3z + &e.

Each of the coefficients is a definite integral. We have in general

+
2md = f_‘:’dx P, - f_:sz(x) cos i,

and mhi= [ :"dm Flo) sin iz,

We thug form the general theorem, which is one of the chief elements of
our analysis:
t=+o

+
97 Fla)=2 (cos i f :daF(a.) c0S i+ 5in i _/:_:"daF(a) sin ia),

==

or 2rF{z)= 2 f da F(a) cos (ix - ta), . . . 199
234, The wvalues of F(x) which correspond to values of x included

between — = and +7 must be regarded as entirely arbitrary. We may
also choose any limits whatever for x . . . 204

235, Divers remarks on the use of developments in tngonometnc series . 206

SECTION VII.
APPLICATION TO THE ACTUAL PROBLEM.

236, 237. Expression of the permanent temperature in the infinite rectangular

slab, the state of the transverse edge being represented by an arbitrary
function . .
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X
nX
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ety pt gt ¥
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T w
5 F(x):f dq cos qxf dd F (a) cos ga.
0 0
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e"%‘
':/_t ’
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Y=
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368
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ERRATA.

Page 9, line 28, for IIL. read IV.

Pages 54, 55, for k read K.

Page 189, line 2, The equation should be denoted (A).
Page 205, last line but one, for x read X,

. du du

Page 298, line 18, for ar read iz

Page 299, line 16, for of read in.
’s 5 last line, read

i s — , f ”"
j; du ¢ (tsinu) =mg + 15,9 +L%SQ¢ + &c.

Page 800, line 8, for A,, A,, Ag, read wdy, wd,, wdq.
Page 407, line 12, for d¢ read dp.
Page 4382, line 13, read (x-—a).
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