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CHAPTER 1
EXPERIMENTS IN DYNAMICS

ExpPERIMENT 1. An example of conservation of angular
momentum.*

1. Angular momentum of a particle about an axis. If at
any instant a particle of mass m be moving with velocity v, it
has momentum mv. The momentum is a vector lying along the
tangent to the path of the particle at the point where the particle
is at the instant considered.

Just as a force has a moment about any straight line or axis 4
unless its line of action either intersect 4 or be parallel to it, so
momentum P along a given straight line has a moment about an
axis 4 unless the straightline either intersect 4 or be parallel toit.
To find the value of the moment of P about 4 we take a plane
cutting 4 at right angles at O and project P upon this plane. If
the perpendicular from O upon the projection of P be ON, and
if the angle between P and the axis be 6, the moment of the
projection about OA is ON . Psinf. The momentum P has the
component P cos 6 parallel to 4, but this has no moment about 4.
Hence ON . Psin@ is the moment of the momentum P about 4.

The moment about 4 of the momentum mw of the particle m
is often called the angular momentum of m about 4.

2. Angular momentum of a system about an axis. For the
purpose of the experiment we may confine

ourselves to the simple case in which every Y :’n
particle of the system moves parallel to a Pz
fixed plane, which we take as the plane of G "
Oxy (Fig. 1). The axis of zis perpendicular y £

to Oxy and its positive direction is towards

the reader. The three axes then form a © * Fig. 1 ¥

right-handed system. In the experiment
the plane Oy is horizontal. Let P be the projection on Oxy of a
particle of mass m. Let the coordinates of P relative to the fixed

* “An experiment illustrating the conservation of angular momentum,” Proc.
Camb. Phil. Soc. Vol. xx1, p. 75 (1922).

SEP I
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2 EXPERIMENTS IN DYNAMICS

axes Ox, Oy be z, y, and let the components of the velocity of P
be u, v. Then the components of the momentum of the particle
are mu, mv. Hence, when counter-clockwise rotation about Oz
is counted as positive, the sum of the moments about Oz of the
momenta mu, mv, or the angular momentum of the particle
about Oz, is m (vx —uy). If H be the angular momentum about
Oz of the whole system of particles,

H=3m@x—uy). cccevvvvviriiiinnins (1)
Let G be the projection on Ozy of the centre of gravity of the
system. Let its coordinates relative to the fixed axes Ox, Oy be
X, Y, and let the components of its velocity be U, V. Let
x=X+¢,y=Y +n, so that £, n are the coordinates of P relative
to axes through G parallel to the fixed axes Oz, Oy. Then, since
G is the centre of gravity,
Zmé=0, Zmn=0. ...cecviiiinenn. (2)
Let u=U +a, v=V + B, so that «, 8 are the components of the
velocity of P relative to G. Then, since w=dz/dt, v=dy/dt,
U=dX/dt, V=dY/dt, we have a=d¢/dt, B=dn/dt. But, by (2),
Zmdé/dt =0, Zmdn/dt=0,
and hence Zma =0, EmB=0. .ioviiiriianns (3)
Now, by (1),
H=Zm{(V+B)(X+&)—(U+a) (Y +n)}
=Im{VX-UY+VEé-Un+BX—aY + BE—an}.
Since U, V and X, Y do not change from particle to particle, we
may bring them outside the sign of summation. Thus
H=VX-UY)ZIm+VEmE— UZmny
+ XEmB — Y Zmo+ Zm (B — an).
Denoting Zm, the mass of the whole system, by M and using (2)
and (3), we have
H=MVX-UY)+Zm(BE—an). coveen...... (4)
The first term in (4) is the angular momentum about Oz of a par-
ticle of mass M placed at G and moving with G. The second term

is the angular momentum of the system, for the motion relative
to G, about an axis through G parallel to Oz.
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EXPERIMENTS IN DYNAMICS 3

3. Method. A board D (Fig. 2) is suspended by a thread which
we suppose to exert no torsional control. The thread is attached
to a torsion head, which is carried by a fixed support. The plane of
the board is horizontal and the axis of suspension cuts the board
in O. The vertical through O is the axis Oz of §2. The inertia bar
A B turns about a vertical shaft fixed to the board, the axis of the
shaft passing through G, the centre of gravity of AB. A second
bar C, suitably fixed to the

board, acts as a counterpoise

to AB. By adjusting C, the D \

plane of D is made horizontal. 0 PO 9,_.
By a light spring E attached W
to the board and operating by a Fig, 2 B

string wound round a drum
carried by 4 B, this bar can be set in motion about @ relative
to the board, when a thread attached to the board and holding
A B in its initial position is burned. Before the thread is burned,
the system is at rest. At any later time let the axis OG of the
board make an angle 6 with OF, its initial direction, and let
the axis G4 of the bar make an angle ¢ +¢ with GO, where € is
the angle between G4 and GO before the thread is burned. Let ¢
be measured in the opposite direction to 6.

With the exception of gravity and the tension of the suspension,
no external forces act on the system at any time. Before the thread
is burned, the system has no angular momentum about Oz. The
burning of the thread does not call any external force into action
and hence the angular momentum of the system about the
vertical axis Oz remains zero. If the moment of inertia about Oz
of the board, the counterpoise and all the other fittings except the
bar A B be K,, the angular momentum about Oz of this part of
the system is K,d6/dt.

Let M be the mass of 4B and let OG=a. Since the linear
velocity of G is adf/dt, the momentum of M at G is Madb/dt, and
the moment of this momentum about Oz is Ma?df/dt. This
angular momentum is in the same direction as that of the board.

The angular velocity of 4B, in the same direction as that of
the board, is df/dt — d¢/dt, and hence, if the moment of inertia of
A B about a vertical axis through @ be K, , its angular momentum

I-2
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4 EXPERIMENTS IN DYNAMICS

about that axis is K, (d0/dt—d¢/dt). Hence, by (4), the angular
momentum of 4B about Oz is

Ma2d0/dt + K, (d0/dt — dp/dt).
The angular momentum of the whole system is zero, and hence

K, do/dt + Ma?df/dt+ K, (d8/dt - d$/dt)=0. ......(5)
. dé [d¢ db
Since @l w=ap
we find, by (5), on dividing throughout by d¢/dt,
de K, _K, (©
@ —_ m el K3 @  esssvsssecssssssa )

The quantity K, + K,+ Ma?, or K,, is the moment of inertia
about Oz of the whole system, when the bar A B is fixed relative
to the board.

Since (6) holds at every instant, we have

0/d=Ky/Kyg, wovrveeeeeeeeenannn. (7)

where 6 and ¢ are, respectively, the angles turned through by the
board relative to the initial line O F and by the bar relative to the
board in any time, each measured from the corresponding zero.

By (5), df/dt=0 when d¢/dt=0. Hence if, at any instant, the
motion of the bar relative to the board be arrested by interaction
between them, the motion of the board will cease at the same
instant.

Let the bar 4 B be removed from the board and be attached to
a vertical torsion wire and be made to execute torsional vibrations,
the axis of suspension agreeing with that about which 4 B turns
when on the board. Let 7', be the periodic time. Let 7'; be the
periodic time when the complete system is suspended from the
same wire; in this measurement 4 B is fixed relative to the board.
Then K,/K;=T,%T,?and thus, by (7),

Olp=T2T% .evvrriiiiininranann.. (8)

In the experiment 0/¢ is compared with T',2/T,2.

4. Experimental details. Fig. 3 shows some details of the
apparatus. The counterpoise does not appear, as it is fixed to the
part of the board which is omitted. The counterpoise and other
fittings should be designed so that the axis of suspension is as
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EXPERIMENTS IN DYNAMICS 5

<

nearly as possible a “ principal axis.”” If this condition be not
secured, the motion of the board will be unsteady. The ends of the
torsion wire W, used in comparing K, with K,, are soldered into
two short cylinders 0-5 cm. in diameter. At the centre of the board
isasocket H, provided with a set-screw. Into thissocket fits either
the rod N, by which the system is attached to the thread, or the
cylinder at the end of the torsion wire. The hole in the bar A B at
G'is of the same diameter as that in H. By a set-screw, the bar can
be secured to the torsion wire.

N

2
Ba/Q \\\\(G;:a\ S o Az"‘

Fig. 3

" The baris held in its initial position 4, B, against the pull of the
spring E* by a thread @ secured under the button R; this position
is defined by the stop L. When the thread is burned, the bar turns
round until it hits the other side of L and is arrested in the position
A4, B,.To prevent rebound, a small pellet of plasticene is placed on
L as shown. Unless the plasticene be re-moulded into pellet form
after each impact, the bar will rebound. Though the rebound does
not vitiate the experiment, it makes the observations more diffi-
cult. The angle ¢ turned through by A B relative to the board is
m—A,GB,. If A,G=r,wehavesin}4,GB,=3%A4, B,/r. Then

¢=m—A,G@By=7—2sin"1 (34, B,/r)radians. ...(9)
* In order that the spring may have the length needed to allow the extension
required, the anchorage of £ is much farther from @ than is suggested in Fig. 3.
The thread @ may pass through an eye in the end of a short horizontal arm so fixed

to the board that the part of @ between the eye and the button R is held away from
the side of the board. The flame is then easily applied to the thread.
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6 EXPERIMENTS IN DYNAMICS

For the determination of A, B,, the board is placed on the
table and a vertical pin is held in a clip so that its tip is just above
the point 4, on the end of the bar. The bar is then turned round
into the second position shown in Fig. 3 and the distance between
the tip of the pin and the point B, is measured.

The angle § turned through by the board is measured by the
fine wire UV, which is stretched in a metal frame carried by the
board and intersects the axis Oz at right angles; it is convenient
if the edges of the board be parallel to OUV. The wire moves
over a horizontal scale whose edge is T'T. A zero J on T'T is
chosen, and 7'T is set perpendicular to OJ. If UV cut the edge in
J initially and in P finally,

tanf0=PJ|JO. ....c...ccccunnn.. (10)

After the observations for the angle 6 have been taken, the
board with its rod N is unhooked from the loop at the end of the
suspending thread. A plummet is then hung from the suspending
thread by a hook and is immersed in water contained in a vessel;
the water damps any oscillations of the plummet. The horizontal
distance between J and the axis of the plummet’s thread is now
easily measured.

For success, the system must be at rest when the thread Q is
burned. The silk thread supporting the system is attached to a
torsion head, which is adjusted so that UV cuts T'T in some point
very near J when the system is at rest. A stop S is fixed to the
scale so that, when the frame touches S, UV cuts 77 in J. A
current sent through the coil Y attracts the small magnet X
attached to the board with a force which should be only just
great enough to keep the frame against the stop. The centre O
of the board is then reduced to rest. A flame or a small gas jet
is prepared and, when the system is at rest, the thread Q is
burned. The current is stopped just before the flame is applied.
The board moves round, and the reading of UV inits new position
of rest at P is taken. The wire may subsequently drift very slowly
from P on account of slight torsion of the silk thread or on ac-
count of draughts, and thus the reading should be taken without
delay.

The supporting thread should be of plasted silk; fine fishing line
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EXPERIMENTS IN DYNAMICS 7

may be used. If a twisted thread be used, it will be difficult to
obtain anything like a steady zero position, since a twisted thread
exerts a couple approximately proportional to the load, unless
the thread be practically ‘“ unwound.”

5. Practical example.

In the present (1934) apparatus the board is 56 cm. long, 8 cm. wide
and 1-5 cm. thick. The inertia bar is 26 cm. long, 1-6 cm. wide and 1-6 cm.
thick. The mass of the whole system is 1770 grm.

Mr J. A. Pattern, using an earlier form of apparatus, obtained the
following results. Values found for J P were 7-50, 7-80, 7-50, 7-70. Mean
7-625 cm. Distance JO was 38-5 cm. Hence tan §=7-625/38-5=0-19805,
and

6=11°12"9"=0-19552 radian.

Distances were, 4, G=150 cm., 4, B,=2-42 cm. Hence

¢=m—2sin"1(1:21/15)=180°—9° 15’ 14" = = — 0-1615 radian.

Thus ¢ =2-9801radians.
Inertia bar was suspended by torsion wire and transits were observed.
Transit Time Transit Time 50T,
mins. secs. mins. secs. mins. secs.

0 59 50 3 43 2 44
10 1 32 60 4 16 2 44
20 2 5 70 4 48 2 43
30 2 37 80 5 21 2 44
40 3 10 90 5 53 2 43

Mean value of 507, is 163-6 secs. Hence T', = 3-272 secs.
When whole system, including inertia bar, was suspended by the same
wire, similar observations gave 507", = 638-9 secs. Hence 7’3 =12-778 secs.
For the times, we have T,2/T,2=3-2722/12-7782=0-06557.
For the angles, we have 6/$=0-19552/2-9801 =0-06561.
Hence equation (8) is closely verified.

ExperIMENT 2. Kater's pendulum.

6. Introduction. Since “¢g” is an acceleration, its determina-
tion involves the measurement of a time and a length. The
“ simple”” pendulum of theory, with its formula ¢ = 2m7+/(l/g), in-
volving a single time and a single length, would be an ideal means
of finding “ ¢.” But such a pendulum cannot be made. If we use
a sphere of finite size as bob, we must use a wire of sufficient
strength to carry the bob and must fix some sort of knife edge to
the wire. A little consideration will show that the method is beset
with such difficulties that it cannot be used in an accurate
determination of ““g¢.”
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8 EXPERIMENTS IN DYNAMICS

We therefore abandon the ‘““simple” pendulum and use a rigid
pendulum. Itisimpossible to determine the moment of inertia of
the pendulum about any given axis by a calculation depending
upon a knowledge of the geometrical form of the pendulum, for
we cannot tell how the density of the material varies from point
to point. We can, however, use the theorem of parallel axes* in
such a way as to eliminate any uncertainty.

If we use two parallel knife edges fized to the pendulum in such
positions that the centre of gravity, @, lies between the knife edges
in the plane containing them, we can, in theory, arrange matters
so that (1) the periodic time about either knife edge is the same
and (2) the distances of @ from the two knife edges are different.
In each case, of course, the knife edge rests on a horizontal plane.
The length of the corresponding “ simple equivalent pendulum
is then equal to the shortest distance between the knife edges.
We cannot attain this ideal, but, if the times be very nearly equal,
the necessary correction is found with ample accuracy.

7. Periodic time of a rigid pendulum. Let the mass of the
pendulum be M and let G be its centre of gravity. Through G we
take an axis in a direction fixed relative to the pendulum; this we
call the G-axis. Let the moment of inertia of the pendulum about
the G-axis be M k2. Let the pendulum have a knife edge parallel to
the G-axis and at distance Afrom it,and let the pendulum oscillate
through a small arc while the knife edge rests upon a horizontal
plane. By the theorem of parallel axes, the moment of inertia
about the knife edge is M (k*>+ £?%). If ¢ be the periodic time,

=42 (K2 +h2)/gh, ..coovvnieiiiinl, (1)
or h2—ght?/4n? + k2=0. ...ooovnininnnn... (2)
If I be the length of the simple equivalent pendulum, [ = gi?/472,
and thus
R2—lh+k2=0. ..cccvvvnvnnnnnnn.. (3)

We are not restricted to a single position for the knife edge, for
if the edge lie along any generating line of a cylinder of radius A
described about the G-axis, ¢* will have the value given by (1).

* Ezxperimental Elasticity, Note IV.
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EXPERIMENTS IN DYNAMICS 9

Solving (2) or (3) for 4, we have

et ) =L B et

For any value of ¢ greater than +/(8n%k/g), or for any value of [
greater than 2k, there are two values of k. Since £ is real, the least
value of [ is 2k, and, when [ has this minimum value, the distance
of the knife edge from @ is k, the radius of gyration of the pen-
dulum about the G-axis.

8. Pendulum with two parallel knife edges. Let the knife
edges be E, F; each is parallel to the G-axis. Let the distances of
E, F from G be hy, h,, let ¢, ¢, be the periodic times for those
knife edges and [, I, the lengths of the simple equivalent pen-
dulums. Then

hyt?= 472 (k®+h?)/g, hyty? =47 (k*+ ho?)[yg.
By subtraction we eliminate k£ and obtain
byt — hoty? =47 (hy®— hy?)[g.
4m® byt —hyty?

Hence g —W=A+B, ............... (5)
12+ 1,2 £,2— 1,2

where A= "2 _~ pB=_1_72 |
2(hy+hy) 2 (hy— hg)

By the use of two knife edges instead of one we gain the great
advantage that k, whose value we cannot calculate, does not
appear in (5). To find g we now have to measure the two timest, , 1,
and the two distances &, &, of E, F from G. The times present no
difficulty, but we cannot identify the position of G' with any
accuracy. If, however, E, F be so placed that (1) the plane through
them passes also through G and (2) G lies between them, A, + A, is
simply the distance between the knife edges, and this can be
measured accurately.

If we can make ¢, =1, without making hy="h,, the term B will
vanish and then we have

dm2 (g =1%[(hy + hy),

where ¢ is the common value of t; and ¢,. We have thus recovered
the simplicity of the theoretical “simple” pendulum with a
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10 EXPERIMENTS IN DYNAMICS

single time and a single distance. In practice we cannot quite
attain this ideal.

To determine the difference h, — k, which occurs in B we must
measure k, and &, separately, since £ and F are on opposite sides
of @, and these measurements cannot be made with accuracy.
The numerator in B is small if ¢, nearly equals ¢,. If 2, and A,
differ widely, B will be so small compared with 4, that the error
due to the uncertainty in A, — h, will be negligible. We have there-
fore to secure that ¢; and ¢, are nearly equal while %, and &, are
widely different. How to do this we can discover by aid of
equation (4).

For a given value of [, we have a choice of two values of #; and
similarly for 7, and %,. For h, we take the positive sign before the
square root and for A, the negative sign. Then

hi—hy =3 (Li—lo) +v/ (}* — k) + v/ (1P — FP),

and so h; — h, will be large even though [, and I, be nearly equal
provided that both /; and I, be large compared with the minimum
2k or that the periodic times be much greater than the minimum
2w/ (2k/g).

We shall fail in our purpose if, in (4), we take the same sign
before the square root for both 4, and 2,. For then we should have

hy—hy=3% (L =1) + {V (32— k%) — /(31,2 — &%)},

and | h; — hy | will be small when 7, and [, are nearly equal.

We can, of course, make ¢, =¢, by making k,=h,=h, where
h has any arbitrary value, but we must avoid the error of sup-
posing that this will necessarily make I=2h. We shall not have
1= 2h unless &, and h, be not only roots of (3) but also be equal.
In this case, as shown in § 7, [ =2k and b, =h,=%. These condi-
tions could be secured by adjusting two massless knife edges
until the periodic time about each reached a minimum value,
which would be the same for each, but this process would be
difficult and without any advantage.

An approximate knowledge of masses and dimensions will
enable us to design a pendulum with two knife edges in such
positions that k,, k, are widely different although the periodic
times are approximately equal. The knife edges being fixed,
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