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First order differential equations

1.1 General remarks about differential equations

1.1.1 Terminology

A differential equation is an equation involving a function and its

derivatives. An example which we will study in detail in this book

is the pendulum equation

d2x

dt2
= − sin(x), (1.1)

which is a differential equation for a real-valued function x of

one real variable t. The equation expresses the equality of two

functions. To make this clear we could write (1.1) more explicitly

as

d2x

dt2
(t) = − sin(x(t)) for all t ∈ R,

but this would lead to very messy expressions in more complicated

equations. We therefore often suppress the independent variable.

When formulating a mathematical problem involving an equa-

tion, we need to specify where we are supposed to look for solu-

tions. For example, when looking for a solution of the equation

x2 +1 = 0 we might require that the unknown x is a real number,

in which case there is no solution, or we might allow x to be com-

plex, in which case we have the two solutions x = ±i. In trying

to solve the differential equation (1.1) we are looking for a twice-

differentiable function x : R → R. The set of all such functions is

very big (bigger than the set of all real numbers, in a sense that

can be made precise by using the notion of cardinality), and this
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2 First order differential equations

is one basic reason why, generally speaking, finding solutions of

differential equations is not easy.

Differential equations come in various forms, which can be clas-

sified as follows. If only derivatives of the unknown function with

respect to one variable appear, we call the equation an ordinary

differential equation, or ODE for short. If the function depends on

several variables, and if partial derivatives with respect to at least

two variables appear in the equation, we call it a partial differen-

tial equation, or PDE for short. In both cases, the order of the

differential equation is the order of the highest derivative occur-

ring in it. The independent variable(s) may be real or complex,

and the unknown function may take values in the real or complex

numbers, or in R
n of C

n for some positive integer n. In the lat-

ter case we can also think of the differential equation as a set of

differential equations for each of the n components. Such a set is

called a system of differential equations of dimension n. Finally

we note that there may be parameters in a differential equation,

which play a different role from the variables. The difference be-

tween parameters and variables is usually clear from the context,

but you can tell that something is a parameter if no derivatives

with respect to it appear in the equation. Nonetheless, solutions

still depend on these parameters. Examples illustrating the terms

we have just introduced are shown in Fig. 1.1.

In this book we are concerned with ordinary differential equa-

tions for functions of one real variable and, possibly, one or more

parameters. We mostly consider real-valued functions but complex-

valued functions also play an important role.

1.1.2 Approaches to problems involving differential

equations

Many mathematical models in the natural and social sciences in-

volve differential equations. Differential equations also play an

important role in many branches of pure mathematics. The fol-

lowing system of ODEs for real-valued functions a, b and c of one
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1.1 General remarks about differential equations 3

dy

dx
− xy = 0 du

dt
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dv

dt
= u

1

c2

∂2u

∂t2
=

∂2u

∂x2

Þrst order ordinary 
differential equation

Þrst order system of  ordinary 
differential equations, 

dimension two

second order ordinary 
differential equation 

second order partial 
differential equation 
with  parameter c

d2y

dx2
=

ÿ

dy

dx

ÿ3

p

Þrst order ordinary 
erential equation

Þrst order system of  ordinary 
erential equations, 
dimension two

second order ordinary 
erential equation second order partial 

erential equation 
with  parameter c

Fig. 1.1. Terminology for differential equations

real variable r arises in differential geometry:

da

dr
=

1

2rc
(a2

− (b − c)2)

db

dr
=

b

2acr
(b2

− (a − c)2)

dc

dr
=

1

2ra
(c2

− (a − b)2),

One is looking for solutions on the interval [π,∞) subject to the

initial conditions

a(π) = 0, b(π) = π, c(π) = −π.

At the end of this book you will be invited to study this problem

as a part of an extended project. At this point, imagine that a

colleague or friend had asked for your help in solving the above

equations. What would you tell him or her? What are the ques-

tions that need to be addressed, and what methods do you know

for coming up with answers? Try to write down some ideas before

looking at the following list of issues and approaches.

(a) Is the problem well-posed? In mathematics, a problem

is called well-posed if it has a solution, if that solution is unique

and if the solution depends continuously on the data given in
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4 First order differential equations

the problem, in a suitable sense. When a differential equation

has one solution, it typically has infinitely many. In order to

obtain a well-posed problem we therefore need to complement the

differential equation with additional requirements on the solution.

These could be initial conditions (imposed on the solution and

its derivatives at one point) or boundary conditions (imposed at

several points).

(b) Are solutions stable? We would often like to know how

a given solution changes if we change the initial data by a small

amount.

(c) Are there explicit solutions? Finding explicit solutions in

terms of standard functions is only possible in rare lucky circum-

stances. However, when an explicit formula for a general solution

can be found, it usually provides the most effective way of answer-

ing questions related to the differential equation. It is therefore

useful to know the types of differential equation which can be

solved exactly.

(d) Can we find approximate solutions? You may be able to

solve a simpler version of the model exactly, or you may be able

to give an approximate solution of the differential equation. In all

approximation methods it is important to have some control over

the accuracy of the approximation.

(e) Can we use geometry to gain qualitative insights? It is

often possible to derive general, qualitative features of solutions

without solving the differential equation. These could include

asymptotic behaviour (what happens to the solution for large r?)

and stability discussed under (b).

(f) Can we obtain numerical solutions? Many numerical

routines for solving differential equations can be downloaded from

open-source libraries like SciPy. Before using them, check if the

problem you are trying to solve is well-posed. Having some insight

into approximate or qualitative features of the solution usually

helps with the numerical work.

In this text we will address all of these issues. We begin by

looking at first order differential equations.
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1.2 Exactly solvable first order ODEs 5

1.2 Exactly solvable first order ODEs

1.2.1 Terminology

The most general first order ODE for a real-valued function x of

one real variable t is of the form

F

ÿ

t, x,
dx

dt

ÿ

= 0, (1.2)

for some real-valued function F of three variables. The function

x is a solution if it is defined at least on some interval I ⊂ R and

if

F

ÿ

t, x(t),
dx

dt
(t)

ÿ

= 0 for all t ∈ I.

We call a first order ODE explicit if it can be written in terms of

a real-valued function f of two variables as

dx

dt
= f(t, x). (1.3)

Otherwise, the ODE is called implicit. Before we try to under-

stand the general case, we consider some examples where solutions

can be found by elementary methods.

1.2.2 Solution by integration

The simplest kind of differential equation can be written in the

form
dx

dt
= f(t),

where f is a real-valued function of one variable, which we assume

to be continuous. By the fundamental theorem of calculus we can

find solutions by integration

x(t) =

�

f(t)dt.

The right hand side is an indefinite integral, which contains an

arbitrary constant. As we shall see, solutions of first order differ-

ential equations are typically only determined up to an arbitrary

constant. Solutions to first order ODEs which contain an arbi-

trary constant are called general solutions.
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6 First order differential equations

Exercise 1.1 Revise your integration by finding general solutions

of the following ODEs. Where are these solutions valid?

(i)
dx

dt
= sin(4t − 3), (ii)

dx

dt
=

1

t2 − 1
.

1.2.3 Separable equations

Let us find the general solution of the following slightly more

complicated equation:

dx

dt
= 2tx2

. (1.4)

It can be solved by separating the variables, i.e., by bringing all the

t-dependence to one side and all the x-dependence to the other,

and integrating:
∫

1

x2
dx =

∫

2tdt,

where we need to assume that x �= 0. Integrating once yields

−
1

x
= t2 + c,

with an arbitrary real constant c. Hence, we obtain a one-parameter

family of solutions of (1.4):

x(t) = −
1

t2 + c
. (1.5)

In finding this family of solutions we had to assume that x �= 0.

However, it is easy to check that the constant function x(t) = 0

for all t also solves (1.4). It turns out that the example is typical

of the general situation: in separating variables we may lose con-

stant solutions, but these can be recovered easily by inspection.

A precise formulation of this statement is given in Exercise 1.8,

where you are asked to prove it using an existence and uniqueness

theorem which we discuss in Section 1.3.

The general solution of a first order ODE is really the family of

all solutions of the ODE, usually parametrised by a real number.

A first order ODE by itself is therefore, in general, not a well-posed

problem in the sense of Section 1.1 because it does not have a

unique solution. In the elementary examples of ODEs in Exercise
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1.2 Exactly solvable first order ODEs 7

1.1 and also in the ODE (1.4) we can obtain a well-posed problem

if we impose an initial condition on the solution. If we demand

that a solution of (1.4) satisfies x(0) = 1 we obtain the unique

answer x(t) =
1

1 − t2
. If, on the other hand, we demand that a

solution satisfies x(0) = 0 then the constant function x(t) = 0 for

all t is the only possibility. The combination of a first order ODE

with a specification of the value of the solution at one point is

called an initial value problem.

The method of solving a first order ODE by separating variables

works, at least in principle, for any equation of the form

dx

dt
= f(t)g(x),

where f and g are continuous functions. The solution x(t) is

determined implicitly by
∫

1

g(x)
dx =

∫

f(t)dt. (1.6)

In general, it may be impossible to express the integrals in terms

of elementary functions and to solve explicitly for x.

1.2.4 Linear first order differential equations

If the function f in equation (1.3) is a sum of terms which are

either independent of x or linear in x, we call the equation linear.

Consider the following example of an initial value problem for a

linear first order ODE:

dx

dt
+ 2tx = t x(0) = 1. (1.7)

First order linear equations can always be solved by using an in-

tegrating factor. In the above example, we multiply both sides of

the differential equation by exp(t2) to obtain

et
2 dx

dt
+ 2tet

2

x = tet
2

. (1.8)

Now the left hand side has become a derivative, and the equation

(1.8) can be written as

d

dt

(

et
2

x
)

= tet
2

.
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8 First order differential equations

Integrating once yields xet
2

=
1

2
et

2

+ c, and hence the general

solution

x(t) =
1

2
+ ce−t

2

.

Imposing x(0) = 1 implies c = 1
2 so that the solution of (1.7) is

x(t) =
1

2

(

1 + e−t
2
)

.

General linear equations of the form

dx

dt
+ a(t)x = b(t), (1.9)

where a and b are continuous functions of t, can be solved using

the integrating factor

I(t) = e
∫

a(t)dt. (1.10)

Since the indefinite integral
∫

a(t)dt is only determined up to an

additive constant, the integrating factor is only determined up to

a multiplicative constant: if I(t) is an integrating factor, so is

C ·I(t) for any non-zero real number C. In practice, we make a

convenient choice. In the example above we had a(t) = 2t and

we picked I(t) = exp(t2). Multiplying the general linear equation

(1.9) by I(t) we obtain

d

dt
(I(t)x(t)) = I(t)b(t).

Now we integrate and solve for x(t) to find the general solution.

In Section 2.5 we will revisit this method as a special case of the

method of variation of the parameters.

1.2.5 Exact equations

Depending on the context, the independent variable in an ODE

is often called t (particularly when it physically represents time),

sometimes x (for example when it is a spatial coordinate) and

sometimes another letter of the Roman or Greek alphabet. It is

best not to get too attached to any particular convention. In the

following example, the independent real variable is called x, and
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1.2 Exactly solvable first order ODEs 9

the real-valued function that we are looking for is called y. The

differential equation governing y as a function of x is

(x + cos y)
dy

dx
+ y = 0. (1.11)

Re-arranging this as

(x
dy

dx
+ y) + cos y

dy

dx
= 0,

we note that

(x
dy

dx
+ y) =

d

dx
(xy), and cos y

dy

dx
=

d

dx
sin y.

If we define ψ(x, y) = xy + sin y then (1.11) can be written

d

dx
ψ(x, y(x)) = 0 (1.12)

and is thus solved by

ψ(x, y(x)) = c, (1.13)

for some constant c.

Equations which can be written in the form (1.12) for some

function ψ are called exact. It is possible to determine whether a

general equation of the form

a(x, y)
dy

dx
(x) + b(x, y) = 0, (1.14)

for differentiable functions a, b : R
2
→ R, is exact as follows.

Suppose equation (1.14) were exact. Then we should be able

to write it in the form (1.12) for a twice-differentiable function

ψ : R
2
→ R. However, by the chain rule,

d

dx
ψ(x, y(x)) =

∂ψ

∂y

dy

dx
(x) +

∂ψ

∂x
,

so that (1.14) is exact if there exists a twice-differentiable function

ψ : R
2
→ R with

∂ψ

∂y
(x, y) = a(x, y) and

∂ψ

∂x
(x, y) = b(x, y).

Since
∂2ψ

∂x∂y
=

∂2ψ

∂y∂x
for twice-differentiable functions we obtain
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10 First order differential equations

a necessary condition for the existence of the function ψ:

∂a

∂x
=

∂b

∂y
. (1.15)

The equation (1.11) is exact because a(x, y) = x + cos y and

b(x, y) = y satisfy (1.15):

∂

∂x
(x + cos y) = 1 =

∂y

∂y
.

To find the function ψ systematically, we need to solve

∂ψ

∂y
= x + cos y,

∂ψ

∂x
= y. (1.16)

As always in solving simultaneous equations, we start with the

easier of the two equations; in this case this is the second equation

in (1.16), which we integrate with respect to x to find ψ(x, y) =

xy + f(y), where f is an unknown function. To determine it, we

use the first equation in (1.16) to derive f ′(y) = cos y, which is

solved by f(y) = sin y. Thus

ψ(x, y) = xy + sin y,

leading to the general solution given in (1.13).

It is sometimes possible to make a non-exact equation exact by

multiplying with a suitable integrating factor. However, it is only

possible to give a recipe for computing the integrating factor in

the linear case. In general one has to rely on inspired guesswork.

1.2.6 Changing variables

Some ODEs can be simplified and solved by changing variables.

We illustrate how this works by considering two important classes.

Homogeneous ODEs are equations of the form

dy

dx
= f

(y

x

)

(1.17)

such as

dy

dx
=

2xy

x2 + y2
=

2( y

x
)

1 + ( y

x
)2

. (1.18)
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