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PREF ACE. 

THE present volume, constituting Part III of this 
work, deals with the theory of ordinary linear differential 
equations. The whole range of that theory is too vast to 
be covered by a single volume; and it contains several 
distinct regions that have no organic relation with one 
another. Accordingly, I have limited the discussion 
to the single region specially occupied by applications 
of the theory of functions; in imposing this limitation, 
my wish has been to secure a uniform presentation of 
the subject. 

As a natural consequence, much is omitted that 
would have been included, had my decision permitted 
the devotion of greater space to the subject. Thus the 
formal theory, in its various shapes, is not expounded, 
save as to a few topics that arise incidentally in the 
functional theory. The association with homogeneous 
forms is indicated only slightly. The discussion of com­
binations of the coefficients, which are invariantive under 
all transformations that leave the equation linear, of the 
associated equations that are covariantive under these 
transformations, and of the significance of these invariants 
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Vl PREFACE 

and co variants, is completely omitted. N or is any appli­
cation of the theory of groups, save in a single functional 
investigation, given here. The student, who wishes to 
consider these subjects, and others that have been passed 
by, will find them in Schlesinger's Handbuch der Theorie 
der linearen Differentialgleichungen, in treatises such as 
Picard's Cow's d'Analyse, and in many of the memoirs 
quoted in the present volume. 

In preparing the volume, I have derived assistance 
from the two works just mentioned, as well as from the 
uncompleted work by the late Dr Thomas Craig. But, 
as will be seen from the references in the text, my main 
assistance has been drawn from the numerous memoirs 
contributed to learned journals by various pioneers in the 
gradual development of the subject. 

Within the limitations that have been imposed, it 
will be seen that much the greater part of the volume is 
assigned to the theory of equations which have uniform 
coefficients. When coefficients are not uniform, the 
difficulties in the discussion are grave: the principal 
characteristics of the integrals of such an equation have, 
as yet, received only slight elucidation. On this score, 
it will be sufficient to mention equations having algebraic 
coefficients: nearly all the characteristic results that have 
been obtained are of the nature of existence-theorems, 
and little progress in the difficult task of constructing 
explicit results has been made. 

Moreover, I have dealt mainly with the general 
theory and have abstained from developing detailed 
properties of the functions defined by important par­
ticular equations. The latter have been used as illustra­
tions; had they been developed in fuller detail than is 
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PREFACE Vll 

given, the investigations would -soon have merged into 
discussions 6f the properties of special functions. In­
stances of such transition are provided in the functions, 
defined by the hypergeometric equation and by the 
modern form of Lame's equation respectively. 

A brief summary of the contents will indicate the 
actual range of the volume. In the first Chapter, the 
synectic integrals of a linear equation, and the conditions 
of their uniqueness, are investigated. The second Chapter 
discusses the general character of a complete system of 
integrals near a singularity of the equation. Chapters 
III, IV, and V are concerned with equations, which have 
their integrals of the type called regular; in particular, 
Chapter V contains those equations the integrals of which 
are algebraic functions of the variable. In Chapter VI, 
equations are considered which have only some of their 
integrals of the regular type; the influence of such 
integrals upon the reducibility of their equation is in­
dicated. Chapter VII is occupied with the determination 
of integrals which, while not regular, are irregular of 
specified types called normal and subnormal; the 
functional significance of such integrals is established, 
in connection with Poincare's development of Laplace's 
solution in the form of a definite integral. Chapter VIII 
is devoted to equations, the integrals of which do not 
belong to any of the preceding types; the method of 
converging infinite determinants is used to obtain the 
complete solution for any such equation. Chapter IX 
relates to those equations, the coefficients of which are 
uniform periodic functions of the variable: there are two 
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Vlll PREFACE 

classes, according as the periodicity is simple or double. 
The final Chapter deals with equations having algebraic 
coefficients; it contu.ins a brief general sketch of Poincare's 
association of such equations with automorphic functions. 

In the reVlSIOn of the proof-sheets, I have received 
valuable assistance from three of my friends and former 
pupils, Mr. E. T. Whittaker,M.A., and Mr. E. W. Barnes, 
M.A., Fellows of Trinity College, Cambridge, and Mr. 
R. W. H. T. Hudson, M.A., Fellow of St John's College, 
Cambridge; I gratefully acknowledge the help which 
they have given me. 

And I cannot omit the expression of my thanks to the 
Staff of the University Press, for the unfailing courtesy 
and readiness with which they have lightened my task 
during the printing of the volume. 

TRINITY COLLEGE, CAMBRIDGE, 

1 March, 1902. 

A. R. FORSYTH. 
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