THEORY

OF

DIFFERENTIAL EQUATIONS.

THEORY

OF

DIFFERENTIAL EQUATIONS.

PART III.

ORDINARY LINEAR EQUATIONS.

BY

ANDREW RUSSELL FORSYTH,

Sc.D., LL.D., F.R.S., SADLERIAN PROFESSOR OF PURE MATHEMATICS, FELLOW OF TRINITY COLLEGE, CAMBRIDGE.

VOL. IV.

CAMBRIDGE: AT THE UNIVERSITY PRESS. 1902

All rights reserved.

© in this web service Cambridge University Press

www.cambridge.org

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107696815

© Cambridge University Press 1902

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 1902 First paperback edition 2011

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-69681-5 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

PREFACE.

THE present volume, constituting Part III of this work, deals with the theory of ordinary linear differential equations. The whole range of that theory is too vast to be covered by a single volume; and it contains several distinct regions that have no organic relation with one another. Accordingly, I have limited the discussion to the single region specially occupied by applications of the theory of functions; in imposing this limitation, my wish has been to secure a uniform presentation of the subject.

As a natural consequence, much is omitted that would have been included, had my decision permitted the devotion of greater space to the subject. Thus the formal theory, in its various shapes, is not expounded, save as to a few topics that arise incidentally in the functional theory. The association with homogeneous forms is indicated only slightly. The discussion of combinations of the coefficients, which are invariantive under all transformations that leave the equation linear, of the associated equations that are covariantive under these transformations, and of the significance of these invariants

vi

PREFACE

and covariants, is completely omitted. Nor is any application of the theory of groups, save in a single functional investigation, given here. The student, who wishes to consider these subjects, and others that have been passed by, will find them in Schlesinger's *Handbuch der Theorie der linearen Differentialgleichungen*, in treatises such as Picard's *Cours d'Analyse*, and in many of the memoirs quoted in the present volume.

In preparing the volume, I have derived assistance from the two works just mentioned, as well as from the uncompleted work by the late Dr Thomas Craig. But, as will be seen from the references in the text, my main assistance has been drawn from the numerous memoirs contributed to learned journals by various pioneers in the gradual development of the subject.

Within the limitations that have been imposed, it will be seen that much the greater part of the volume is assigned to the theory of equations which have uniform coefficients. When coefficients are not uniform, the difficulties in the discussion are grave: the principal characteristics of the integrals of such an equation have, as yet, received only slight elucidation. On this score, it will be sufficient to mention equations having algebraic coefficients: nearly all the characteristic results that have been obtained are of the nature of existence-theorems, and little progress in the difficult task of constructing explicit results has been made.

Moreover, I have dealt mainly with the general theory and have abstained from developing detailed properties of the functions defined by important particular equations. The latter have been used as illustrations; had they been developed in fuller detail than is

PREFACE

given, the investigations would soon have merged into discussions of the properties of special functions. Instances of such transition are provided in the functions, defined by the hypergeometric equation and by the modern form of Lamé's equation respectively.

A brief summary of the contents will indicate the actual range of the volume. In the first Chapter, the synectic integrals of a linear equation, and the conditions of their uniqueness, are investigated. The second Chapter discusses the general character of a complete system of integrals near a singularity of the equation. Chapters III, IV, and V are concerned with equations, which have their integrals of the type called regular; in particular, Chapter V contains those equations the integrals of which are algebraic functions of the variable. In Chapter VI, equations are considered which have only some of their integrals of the regular type; the influence of such integrals upon the reducibility of their equation is indicated. Chapter VII is occupied with the determination of integrals which, while not regular, are irregular of specified types called normal and subnormal; the functional significance of such integrals is established, in connection with Poincaré's development of Laplace's solution in the form of a definite integral. Chapter VIII is devoted to equations, the integrals of which do not belong to any of the preceding types; the method of converging infinite determinants is used to obtain the complete solution for any such equation. Chapter IX relates to those equations, the coefficients of which are uniform periodic functions of the variable : there are two

vii

viii

PREFACE

classes, according as the periodicity is simple or double. The final Chapter deals with equations having algebraic coefficients; it contains a brief general sketch of Poincaré's association of such equations with automorphic functions.

In the revision of the proof-sheets, I have received valuable assistance from three of my friends and former pupils, Mr. E. T. Whittaker, M.A., and Mr. E. W. Barnes, M.A., Fellows of Trinity College, Cambridge, and Mr. R. W. H. T. Hudson, M.A., Fellow of St John's College, Cambridge; I gratefully acknowledge the help which they have given me.

And I cannot omit the expression of my thanks to the Staff of the University Press, for the unfailing courtesy and readiness with which they have lightened my task during the printing of the volume.

A. R. FORSYTH.

TRINITY COLLEGE, CAMBRIDGE, 1 March, 1902.

CONTENTS.

CHAPTER I.

LINEAR EQUATIONS: EXISTENCE OF SYNECTIC INTEGRALS: FUNDAMENTAL SYSTEMS.

ART.		PAGE
1.	Introductory remarks	1
2.	Form of the homogeneous linear equation of order m .	2
3—5.	Establishment of the existence of a synectic integral in the	
	domain of an ordinary point, determined uniquely by the	
	initial conditions : with corollaries, and examples	4
6.	Hermite's treatment of the equation with constant coefficients	15
7.	Continuation of the synectic integral beyond the initial	
	domain; region of its continuity bounded by the singu-	
	larities of the equation	20
8.	Certain deformations of path of independent variable leave	
	the final integral unchanged	22
9.	Sets of integrals determined by sets of initial values	24
10.	The determinant $\Delta(z)$ as affecting the linear independence	
	of a set of m integrals: a fundamental system and the	
	effective test of its fitness	27
11.	Any integral is linearly expressible in terms of the elements	
	of a fundamental system	30
12.	Construction of a special fundamental system	32

CHAPTER II.

GENERAL FORM AND PROPERTIES OF INTEGRALS NEAR A SINGULARITY.

13.	Construction of the fundamental equation belonging to a	
	singularity	35
14.	The fundamental equation is independent of the choice of the	
	fundamental system : Poincaré's theorem	3 8

х

CONTENTS

ART.		PAGE
15, 16.	The elementary divisors of the fundamental equation in its	
	determinantal form also are invariants	41
17.	Tannery's converse proposition, with illustrations	44
18.	A fundamental system of integrals, when the roots of the	
	fundamental equation are distinct from one another .	50
19.	Effect of a multiple root	52
20.	Transformation of the fundamental equation: elementary	
	divisors of the reduced form	54
21, 22.	Group of integrals connected with a multiple root: resolution	
	of the group into sub-groups	57
23.	Hamburger's sub-groups: equations characteristic of the	
	integrals in a sub-group: and the general analytical	
	form of the integrals	62
24.	Modification of the analytical expression of the integrals in a	
	Hamburger sub-group	64
25-28.	Converse of the preceding result: the integrals in a sub-group	
	satisfy a linear equation of lower order: Fuchs's theorem	
	relating to such integrals	66

CHAPTER III.

REGULAR INTEGRALS: EQUATION HAVING ALL ITS INTEGRALS REGULAR NEAR A SINGULARITY.

Definition of integral, <i>regular</i> in the vicinity of a singularity :	
Index of the determinant of a fundamental system of integrals	73
	75
	77
of Frobenius	78
Series proved to converge uniformly and unconditionally .	81
Integral associated with a simple root of an algebraic (in-	
dicial) equation	85
Set of integrals associated with special group of roots of the	
algebraic (indicial) equation, with summary of results	
when all the integrals are regular	86
Definition of <i>indicial equation</i> , <i>indicial function</i> : significance	
of integrals obtained	94
The integrals obtained constitute a fundamental system : with	
examples	95
	 index to which it belongs

CONTENTS

ART.		PAGE
41.	Conditions that every regular integral belonging to a par- ticular exponent should have its expression free from	
	logarithms; with examples	106
42, 43.	Conditions that there should be at least one regular integral belonging to a particular exponent and free from loga-	
	rithms	110
44.	Alternative method sometimes effective for settling the ques-	
	tion in \S 42, 43	113
45.	Discrimination between <i>real</i> singularity and <i>apparent</i> singu-	
	larity : conditions for the latter	117
	Note on the series in § 34	122

CHAPTER IV.

EQUATIONS HAVING THEIR INTEGRALS REGULAR IN THE VICINITY OF EVERY SINGULARITY (INCLUDING INFINITY).

46.	Equations (said to be of the <i>Fuchsian type</i>) having all their	
	integrals regular in the vicinity of every singularity	
	(including ∞): their form : with examples	123
47.	Equation of second order completely determined by assign-	
	ment of singularities and their exponents : Riemann's	
	P-function	135
48.	Significance of the relation among the exponents of the pre-	
	ceding equation and function	139
49.	Construction of the differential equations thus determined .	141
50.	The equation satisfied by the hypergeometric series, with	
	some special cases	144
51, 52.	Equations of the Fuchsian type and the second order with	
	more than three singularities (i) when ∞ is not a singu-	
	larity, (ii) when ∞ is a singularity	150
5 3 .	Normal forms of such equations	156
54.	Lamé's equation transformed so as to be of Fuchsian type	160
55.	Bôcher's theorem on the relation between the linear equations	
	of mathematical physics and an equation of the second	
	order and Fuchsian type with five singularities	161
56.	Heine's equations of the second order having an integral that	
	is a polynomial	165
57.	Equations of the second order all whose integrals are rational	169

xi

xii

CONTENTS

CHAPTER V.

LINEAR EQUATIONS OF THE SECOND AND THE THIRD ORDERS POSSESSING ALGEBRAIC INTEGRALS.

ART.		PAGE
58.	Methods of determining whether an equation has algebraic	
	integrals	174
59.	Klein's special method for determining all the finite groups for	
	the equation of the second order	176
6 0.	The equations satisfied by the quotient of two solutions of	
	the equation of the second order : their integrals	180
61.	Construction of equations of the second order algebraically	
	integrable	182
62.	Means of determining whether a given equation is alge-	
	braically integrable: with examples	184
63, 64.	Equations of the third order: their quotient-equations .	191
65.	Painlevé's invariants, corresponding to the Schwarzian deriva-	
	tive for the equation of the second order; connection	
	with Laguerre's invariant	194
66.	Association with finite groups of transformations, that are	
	lineo-linear in two variables	197
67.	Indications of other possible methods	198
68.	Remarks on equations of the fourth order	199
69.	Association of equations of the third and higher orders with	
	the theory of homogeneous forms	202
70.	And of equations of the second order	206
71, 72.	Discussion of equations of the third order, with a general	
• 1, • 2.	theorem due to Fuchs; with example, and references for	
	equations of higher order	209
		400

CHAPTER VI.

EQUATIONS HAVING ONLY SOME OF THEIR INTEGRALS REGULAR NEAR A SINGULARITY.

73.	Equations having only some of their integrals regular in the	
	vicinity of a singularity : the characteristic index	219
74.	The linearly independent aggregate of regular integrals	
	satisfy a linear equation of order equal to their number.	222
75.	Reducible equations	223
76.	Frobenius's characteristic function, indicial function, indicial	
	equation; normal form of a differential equation associ-	
	able with the indicial function, uniquely determined by	
	the characteristic function	226
77.	The number of regular integrals of an equation of order m	
	and characteristic index n is not greater than $m-n$.	229

DIGE

CONTENTS

xiii

ART.		PAGE
78.	The number of regular integrals can be less than $m - n$.	233
79.	Determination of the regular integrals when they exist;	
	with examples	235
80.	Existence of irreducible equations	247
81.	An equation of order m , having s independent regular integrals, has $m-s$ non-regular integrals associated with an	
	equation of order $m-s$	248
82.	Lagrange's equation, <i>adjoint</i> to a given equation	251
83.	Relations between an equation and its adjoint, in respect of the number of linearly independent regular integrals	
	possessed by the two equations	256

CHAPTER VII.

NORMAL INTEGRALS : SUBNORMAL INTEGRALS.

84.	Integrals for which the singularity of the equation is essential: normal integrals	260
85.	Thomé's method of obtaining normal integrals when they	200
	exist	262
86, 87.	Construction of determining factor: possible cases	264
88.	Subnormal integrals	269
89, 90.	Rank of an equation; Poincaré's theorem on a set of	
	normal or subnormal functions as integrals ; examples	270
91.	Hamburger's equations, having $z=0$ for an essential singu-	
	larity of the integrals, which are regular at ∞ and	
	elsewhere are synectic : equation of second order .	276
92.	Cayley's method of obtaining normal integrals	281
93, 94.	Hamburger's equations of order higher than the second .	288
95.	Conditions associated with a simple root of the character-	
	istic equation for the determining factor	294
96.	Likewise for a multiple root	298
97.	Subnormal integrals of Hamburger's equations	299
98, 99.	Detailed discussion of equation of the third order	301
100.	Normal integrals of equations with rational coefficients .	313
101.	Poincaré's development of Laplace's solution for grade	
	unity	317
102.	Liapounoff's theorem	319
103—105.	Application to the evaluation of the definite integral in	
	Laplace's solution, leading to a normal integral .	323
106.	Double-loop integrals, after Jordan and Pochhammer .	333
107.	When the normal series diverges, it is an asymptotic repre-	
	sentation of the definite-integral solution	338
108.	Poincaré's transformation of equations of rank higher than	
	unity to equations of rank unity	342

xiv

CONTENTS

CHAPTER VIII.

INFINITE DETERMINANTS, AND THEIR APPLICATION TO THE SOLUTION OF LINEAR EQUATIONS.

ART.		PAGE
109.	Introduction of infinite determinants: tests of conver-	
	gence : properties	348
110.	Development	352
111.	Minors	353
112.	Uniform convergence when constituents are functions of a	
	parameter	358
113.	Solution of an unlimited number of simultaneous linear	
	equations	36 0
114.	Differential equations having no regular integral, no normal	
	integral, no subnormal integral	363
115.	Integral in the form of a Laurent series : introduction of	
	an infinite determinant $\Omega(ho)$	365
116.	Convergence of $\Omega(\rho)$	366
117.	Introduction of another infinite determinant $D(\rho)$: its	
	convergence, and its relation to $\Omega(\rho)$, with deduced	
	expression of $\Omega(\rho)$	3 69
118.	Convergence of the Laurent series expressing the integral .	376
119.	Generalisation of method of Frobenius (in Chap. III) to	
	determine a system of integrals	379
120 - 123.	Various cases according to the character of the irreducible	
	roots of $D(\rho) = 0$	380
124.	The system of integrals is fundamental	387
125.	The equation $D(\rho)=0$ is effectively the fundamental equa-	
	tion for the combination of singularities within the	
	circle $ z = R$	389
126.	General remark : examples	392
127.	Other methods of obtaining the fundamental equation, to	
	which $D(\rho) = 0$ is effectively equivalent: with an	
	example	3 98

CHAPTER IX.

EQUATIONS WITH UNIFORM PERIODIC COEFFICIENTS.

128.	Equations with simply-periodic coefficients: the	funda	L-	
	mental equation associated with the period			403
129.	Simple roots of the fundamental equation .			407
130.	A multiple root of the fundamental equation .	•		408

CONTENTS

xv

ART.	PAG	E
131.	Analytical form of the integrals associated with a root . 41	1
132.	Modification of the form of the group of integrals associated with a multiple root	4
133.	Use of elementary divisors : resolution of group into sub- groups : number of integrals, that are periodic of the second kind	
134.	More precise establishment of results in § 132 41	
135.	Converse proposition, analogous to Fuchs's theorem in § 25 42	۰.
136.	Further determination of the integrals, with examples . 42	
137.	Liapounoff's method	
138-140.	Discussion of the equation of the elliptic cylinder,	
	$w'' + (a + c \cos 2z) w = 0$	1
141.	Equations with <i>doubly-periodic</i> coefficients; the funda- mental equations associated with the periods 44	1
142, 143.	Picard's theorem that such an equation possesses an integral which is doubly-periodic of the second kind : the number of such integrals	7
144, 145.	The integrals associated with multiple roots of the funda-	'
	mental equations: two cases 45	1
146.	First stage in the construction of analytical expressions of integrals	7
147.	Equations that have uniform integrals: with examples . 45	÷.
148.	Lamé's equation, in the form $w'' = w \{n(n+1) p(z) + B\},\$	1
	deduced from the equation for the potential	4
149—151.	Two modes of constructing the integral of Lamé's equation 46	8

CHAPTER X.

EQUATIONS HAVING ALGEBRAIC COEFFICIENTS.

152.	Equations with algebraic coefficients 4	78
153, 154.	Fundamental equation for a singularity, and fundamental	
	systems; examples 4	180
155, 156.	Introduction of automorphic functions 4	88
157, 158.	Automorphic property and conformal representation . 4	91
159-161.	Automorphic property and linear equations of second order 4	95
162.	Illustration from elliptic functions 5	01
163.	Equations with one singularity	06
164.	Equations with two singularities 5	07
165,	Equations with three singularities 5	08
166.	General statement as to equations with any number of	
	singularities, whether real or complex 5	510

xvi

CONTENTS

ART.										PAGE
167.	Statement of Poinca	ré's 1	result	ts.		•				515
168, 169.	Poincaré's theorem that any linear equation with algebraic coefficients can be integrated by Fuchsian and Zeta-									
	fuchsian function	ns.	•	•	•	•	•	•	•	517
170.	Properties of these fu	nctio	ons:	and v	verific	ation	of Po	oinca	ré's	
	theorem	•	•	•	•	•	•	•	•	521
171.	Concluding remarks	·	•	•	·	·	•	•	•	524
	INDEX TO PART III									527