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EQUIVALENT

SINGLE-DEGREE-OF-FREEDOM

SYSTEM AND FREE VIBRATION

The course on Mechanical Vibration is an important part of the

Mechanical Engineering undergraduate curriculum. It is necessary

for the development and the performance of many modern engi-

neering products: automobiles, jet engines, rockets, bridges, electric

motors, electric generators, and so on. Whenever a mechanical sys-

tem contains storage elements for kinetic and potential energies, there

will be vibration. The vibration of a mechanical system is a contin-

ual exchange between kinetic and potential energies. The vibration

level is reduced by the presence of energy dissipation elements in the

system. The problem of vibration is further accentuated because of

the presence of time-varying external excitations, for example, the

problem of resonance in a rotating machine, which is caused by the

inevitable presence of rotor unbalance. There are many situations

where the vibration is caused by internal excitation, which is depen-

dent on the level of vibration. This type of vibration is known as self-

excited oscillations, for example, the failure of the Tacoma suspension

bridge (Billah and Scanlan, 1991) and the fluttering of an aircraft wing.

This course deals with the characterization and the computation of the

response of a mechanical system caused by time-varying excitations,

which can be independent of or dependent on vibratory response.

In general, the vibration level of a component of a machine has to

be decreased to increase its useful life. As a result, the course also
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2 Vibration of Mechanical Systems

examines the methods used to reduce vibratory response. Further, this

course also develops an input/output description of a dynamic system,

which is useful for the design of a feedback control system in a future

course in the curriculum.

The book starts with the definition of basic vibration elements

and the vibration analysis of a single-degree-of-freedom (SDOF) sys-

tem, which is the simplest lumped parameter mechanical system and

contains one independent kinetic energy storage element (mass), one

independent potential energy storage element (spring), and one inde-

pendent energy dissipation element (damper). The analysis deals

with natural vibration (without any external excitation) and forced

response as well. The following types of external excitations are con-

sidered: constant, sinusoidal, periodic, and impulsive. In addition,

an arbitrary nature of excitation is considered. Then, these analyses

are presented for a complex lumped parameter mechanical system

with multiple degrees of freedom (MDOF). The design of vibration

absorbers is presented. Next, the vibration of a system with continu-

ous distributions of mass, such as strings, longitudinal bars, torsional

shafts, and beams, is presented. It is emphasized that the previous

analyses of lumped parameter systems serve as building blocks for

computation of the response of a continuous system that is governed

by a partial differential equation. Last, the fundamentals of finite ele-

ment analysis (FEA), which is widely used for vibration analysis of a

real structure with a complex shape, are presented. This presentation

again shows the application of concepts developed in the context of

SDOF and MDOF systems to FEA.

In this chapter, we begin with a discussion of degrees of freedom

and the basic elements of a vibratory mechanical system that are a

kinetic energy storage element (mass), a potential energy storage ele-

ment (spring), and an energy dissipation element (damper). Then,

an SDOF system with many energy storage and dissipation elements,

which are not independent, is considered. It is shown how an equiv-

alent SDOF model with one equivalent mass, one equivalent spring,
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Equivalent Single-Degree-of-Freedom System and Free Vibration 3

and one equivalent damper is constructed to facilitate the derivation

of the differential equation of motion. Next, the differential equation

of motion of an undamped SDOF spring–mass system is derived along

with its solution to characterize its vibratory behavior. Then, the solu-

tion of the differential equation of motion of an SDOF spring–mass–

damper system is obtained and the nature of the response is exam-

ined as a function of damping values. Three cases of damping lev-

els, underdamped, critically damped, and overdamped, are treated in

detail. Last, the concept of stability of an SDOF spring–mass–damper

system is presented along with examples of self-excited oscillations

found in practice.

1.1 DEGREES OF FREEDOM

Degrees of freedom (DOF) are the number of independent coordinates

that describe the position of a mechanical system at any instant of time.

For example, the system shown in Figure 1.1.1 has one degree of free-

dom x, which is the displacement of the mass m1. In spite of the two

masses m1 and m2 in Figure 1.1.2, this system has only one degree of

freedom x because both masses are connected by a rigid link, and the

displacements of both masses are not independent. The system shown

in Figure 1.1.3 has two degrees of freedom x1 and x2 because both

masses m1 and m2 are connected by a flexible link or a spring, and the

displacements of both masses are independent.

Next, consider rigid and flexible continuous cantilever beams as

shown in Figures 1.1.4 and 1.1.5. The numbers of degrees of freedom

for rigid and flexible beams are 0 and ∞, respectively. Each contin-

uous beam can be visualized to contain an infinite number of point

masses. These point masses are connected by rigid links for a rigid

beam as shown in Figure 1.1.2, whereas they are connected by flexible

links for a flexible beam as shown in Figure 1.1.3. Consequently, there

is one degree of freedom associated with each of the point masses in

a flexible beam.
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4 Vibration of Mechanical Systems
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Figure 1.1.1 An SDOF system with a single mass
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Figure 1.1.2 An SDOF system with two masses
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Figure 1.1.3 Two DOF systems with two masses
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Figure 1.1.4 A rigid beam fixed at one end

. . . . . . .
Point masses connected by flexible links

DOF = ∞

Flexible beam

Figure 1.1.5 A flexible beam fixed at one end
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Equivalent Single-Degree-of-Freedom System and Free Vibration 5
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Figure 1.2.1 A mass in pure translation

1.2 ELEMENTS OF A VIBRATORY SYSTEM

There are three basic elements of a vibratory system: a kinetic energy

storage element (mass), a potential energy storage element (spring),

and an energy dissipation element (damper). The description of each

of these three basic elements is as follows.

1.2.1 Mass and/or Mass-Moment of Inertia

Newton’s second law of motion and the expression of kinetic energy

are presented for three types of motion: pure translational motion,

pure rotational motion, and planar (combined translational and rota-

tional) motion.

Pure Translational Motion

Consider the simple mass m (Figure 1.2.1) which is acted upon by a

force f (t).

Applying Newton’s second law of motion,

mẍ = f (t) (1.2.1)

where

ẋ = dx
dt

and ẍ = d2x
dt2

(1.2.2a, b)

The energy of the mass is stored in the form of kinetic energy (KE):

KE = 1
2

mẋ2 (1.2.3)
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6 Vibration of Mechanical Systems
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Figure 1.2.2 A mass in pure rotation

Pure Rotational Motion

Consider the mass m (Figure 1.2.2) which is pinned at the point O,

and acted upon by an equivalent external force feq and an equivalent

external moment σeq. This mass is undergoing a pure rotation about

the point O, and Newton’s second law of motion leads to

Ioθ̈ = −mgr sin θ + feq� + σeq (1.2.4)

where Io is the mass-moment of inertia about the center of rotation O,

θ is the angular displacement, and � is the length of the perpendicular

from the point O to the line of force.

The KE of the rigid body is

KE = 1
2

Ioθ̇
2 (1.2.5)

The potential energy (PE) of the rigid body is

PE = mg(r − r cos θ) (1.2.6)

Planar Motion (Combined Rotation and Translation)

of a Rigid Body

Consider the planar motion of a rigid body with mass m and the mass-

moment of inertia Ic about the axis perpendicular to the plane of

motion and passing through the center of mass C (Figure 1.2.3). Forces

fi , i = 1, 2, . . . , nf , and moments σi , i = 1, 2, . . . , nt, are acting on this
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Figure 1.2.3 Planar motion of a rigid body

rigid body. Let xc and yc be x- and y- coordinates of the center of

mass C with respect to the fixed x−y frame. Then, Newton’s second

law of motion for the translational part of motion is given by

mẍc =
∑

i

fxi (t) (1.2.7)

mÿc =
∑

i

fyi (t) (1.2.8)

where fxi and fyi are x- and y- components of the force fi . Newton’s

second law of motion for the rotational part of motion is given by

Icθ̈ = Icω̇ =
∑

i

σi (t) +
∑

i

σ c
fi

(1.2.9)

where σ c
fi

is the moment of the force fi about the center of mass C.

And, θ and ω are the angular position and the angular velocity of the

rigid body, respectively. The KE of a rigid body in planar motion is

given by

KE = 1
2

mv2
c + 1

2
Icω

2 (1.2.10)

where vc is the magnitude of the linear velocity of the center of mass,

that is,

v2
c = ẋ2

c + ẏ2
c (1.2.11)
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8 Vibration of Mechanical Systems
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Figure 1.2.4 A massless spring in translation

Special Case: Pure Rotation about a Fixed Point

Note that the pure rotation of the rigid body (Figure 1.2.2) is a special

planar motion for which

vc = rω (1.2.12)

and Equation 1.2.10 leads to

KE = 1
2

(mr2 + Ic)ω2 (1.2.13)

Using the parallel-axis theorem,

Io = Ic + mr2 (1.2.14)

Therefore, Equation 1.2.5 is obtained for the case of a pure rotation

about a fixed point.

1.2.2 Spring

The spring constant or stiffness and the expression of PE are pre-

sented for two types of motion: pure translational motion and pure

rotational motion.

Pure Translational Motion

Consider a massless spring, subjected to a force f (t) on one end

(Figure 1.2.4). Because the mass of the spring is assumed to be zero,

the net force on the spring must be zero. As a result, there will be an

equal and opposite force on the other end. The spring deflection is the

difference between the displacements of both ends, that is,

spring deflection = x2 − x1 (1.2.15)
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Figure 1.2.5 A massless spring in rotation

and the force is directly proportional to the spring deflection:

f (t) = k(x2 − x1) (1.2.16)

where the proportionality constant k is known as the spring constant

or stiffness.

The PE of the spring is given by

PE = 1
2

k(x2 − x1)2 (1.2.17)

It should be noted that the PE is independent of the sign (extension

or compression) of the spring deflection, x2 − x1.

Pure Rotational Motion

Consider a massless torsional spring, subjected to a torque σ (t) on one

end (Figure 1.2.5). Because the mass of the spring is assumed to be

zero, the net torque on the spring must be zero. As a result, there will

be an equal and opposite torque on the other end. The spring deflec-

tion is the difference between angular displacements of both ends,

that is,

spring deflection = θ2 − θ1 (1.2.18)

and the torque is directly proportional to the spring deflection:

σ (t) = kt(θ2 − θ1) (1.2.19)

where the proportionality constant kt is known as the torsional spring

constant or torsional stiffness.

The PE of the torsional spring is given by

PE = 1
2

kt(θ2 − θ1)2 (1.2.20)
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10 Vibration of Mechanical Systems
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Figure 1.2.6 (a) A massless damper in translation; (b) A mass attached to the right
end of the damper

It should be noted that the PE is independent of the sign of the spring

deflection, θ2 − θ1.

1.2.3 Damper

The damping constant and the expression of energy dissipation are

presented for two types of motion: pure translational motion and pure

rotational motion.

Pure Translational Motion

Consider a massless damper, subjected to force f (t) on one end

(Figure 1.2.6a). Because the mass of the damper is assumed to be

zero, the net force on the damper must be zero. As a result, there

will be an equal and opposite force on the other end, and the damper

force is directly proportional to the difference of the velocities of both

ends:

f (t) = c(ẋ2(t) − ẋ1(t)) (1.2.21)

where the proportionality constant c is known as the damping con-

stant. The damper defined by Equation 1.2.21 is also known as the

linear viscous damper.

If there is a mass attached to the damper at the right end (Fig-

ure 1.2.6b) with the displacement x2, the work done on the mass
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