CAMBRIDGE

Cambridge University Press & Assessment
978-1-107-69279-4 — Essentials of Atmospheric and Oceanic Dynamics

Geoffrey K. Vallis
Excerpt
More Information

Part |

GEOPHYSICAL FLUIDS

@© in this web service Cambridge University Press & Assessment www.cambridge.org


www.cambridge.org/9781107692794
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-69279-4 — Essentials of Atmospheric and Oceanic Dynamics
Geoffrey K. Vallis

Excerpt

More Information

CHAPTER

1

Fluid Fundamentals

are heated. But, unlike solids, they flow and deform. In this chapter

we establish the governing equations of motion for a fluid, with par-
ticular attention to air and seawater — the fluids of the atmosphere and
ocean, respectively. Readers who already have knowledge of fluid dynam-
ics may skim this chapter and begin reading more seriously at Chapter 2,
where we begin to look at the effects of rotation and stratification.

F LUIDS, LIKE SOLIDS, move if they are pushed and they warm if they

1.1  Time DERIVATIVES FOR FLUIDS

1.1.1 Field and Material Viewpoints

In solid-body mechanics one is normally concerned with the position and
momentum of an identifiable object, such as a football or a planet, as it
moves through space. In principle we could treat fluids the same way
and try to follow the properties of individual fluid parcels as they flow
along, perhaps getting hotter or colder as they move. This perspective
is known as the material or Lagrangian viewpoint. However, in fluid dy-
namical problems we generally would like to know what the values of
velocity, density and so on are at fixed points in space as time passes. A
weather forecast we care about tells us how warm it will be where we live
and, if we are given that, we may not care where a particular fluid parcel
comes from or where it subsequently goes. Since the fluid is a continuum,
this knowledge is equivalent to knowing how the fields of the dynamical
variables evolve in space and time. This viewpoint is known as the field
or Eulerian viewpoint.

Although the field viewpoint will often turn out to be the most prac-
tically useful, the material description is invaluable both in deriving the
equations and in the subsequent insight it frequently provides. This is
because the important quantities from a fundamental point of view are

3

The fluid dynamical equa-
tions of motion determine
the evolution of a fluid. The
equations are based on New-
ton’s laws of motion and the
laws of thermodynamics, and
embody the principles of
conservation of momentum,
energy and mass. Initial con-
ditions and boundary condi-
tions are needed to solve the
equations.
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4 CHAPTER 1. FLUID FUNDAMENTALS

often those which are associated with a given fluid element: it is these
which directly enter Newton’s laws of motion and the thermodynamic
equations. It is thus important to have a relationship between the rate
of change of quantities associated with a given fluid element and the local
The Lagrangian viewpoint is rate of change of a field. The material derivative (also called the advective

named for the Franco-Italian derivative or Lagrangian derivative) provides this relationship.
J. L. Lagrange (1736—-1813), one
of the most renowned mathe-

maticians of his time. The Eu- 1.1.2  The Material Derivative of a Fluid Property
lerian point of view is named
for Leonhard Euler (1707- A fluid element is an infinitesimal, indivisible, piece of fluid — effectively
1783), the great Swiss mathe- a very small fluid parcel of fixed mass. The material derivative, or the La-
matician. In fact, Euler is also grangian derivative, is the rate of change of a property (such as temperature
largely responsible for the La- or momentum) of a particular fluid element or finite mass of fluid; that is,
grangian view, but the attribu- it is the total time derivative of a property of a piece of fluid.

tion became tangled over time. Let us suppose that a fluid is characterized by a given velocity field

v(x, t), which determines its velocity throughout. Let us also suppose that
the fluid has another property ¢, and let us seek an expression for the rate
of change of ¢ of a fluid element. Since ¢ is changing in time and in space
we use the chain rule,

9

dp= 26+ 5. 995, 095, _ g—‘t"&wx-v(p. (1.1)
z

ot ox dy )

This is true in general for any 8¢, dx, etc. The total time derivative is then

dp de dx
do _ 99 2* 12
i or ar ? (1.2)

If this equation is to provide a material derivative we must identify the
time derivative in the second term on the right-hand side with the rate
of change of position of a fluid element, namely its velocity. Hence, the
material derivative of the property ¢ is

dp _d¢
d9 _ 99 . .ve. 13
a o UV (1.3)

The right-hand side expresses the material derivative in terms of the local
rate of change of ¢ plus a contribution arising from the spatial variation
of ¢, experienced only as the fluid parcel moves. Because the material
derivative is so common, and to distinguish it from other derivatives, we
denote it by the operator D/D¢. Thus, the material derivative of the field

@ is

De 0d¢
Dt ot - Ve (14

The brackets in the last term of this equation are helpful in reminding us
that (v - V) is an operator acting on ¢. The operator d/9t + (v - V) is the
Eulerian representation of the Lagrangian derivative as applied to a field.
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1.1 TiMme DERIVATIVES FOR FLUIDS

Material derivative of vector field

The material derivative may act on a vector field b, in which case

Db b

Di =5 T @ Vb (1.5)

In Cartesian coordinates this is

Db ob b . ob ob

A AT A 1.6
Dr ot ox Yoy T Vaz (1.6)

and for a particular component of b, b* say,
Db*  0b ab ab ab (17)

Dr o “ox oy Yoz

and similarly for b and b*. In coordinate systems other than Cartesian
the advective derivative of a vector is not simply the sum of the advective
derivatives of its components, because the coordinate vectors themselves
change direction with position; this will be important when we deal with
spherical coordinates.

1.1.3 Material Derivative of a Volume

The volume that a given, unchanging, mass of fluid occupies is deformed
and advected by the fluid motion, and there is no reason why it should
remain constant. Rather, the volume will change as a result of the move-
ment of each element of its bounding material surface, and in particular
it will change if there is a non-zero normal component of the velocity at
the fluid surface. That is, if the volume of some fluid is f dV, then

RJ dV:Jv-dS, (1.8)
Dt Jy s

where the subscript V indicates that the integral is a definite integral over
some finite volume V, and the limits of the integral are functions of time
since the volume is changing. The integral on the right-hand side is over
the closed surface, S, bounding the volume. Although intuitively apparent
(to some), this expression may be derived more formally using Leibniz’s
formula for the rate of change of an integral whose limits are changing.
Using the divergence theorem on the right-hand side, (1.8) becomes

RJ dV=J V-vdV. (1.9)
Dt Jv v

The rate of change of the volume of an infinitesimal fluid element of vol-
ume AV is obtained by taking the limit of this expression as the volume
tends to zero, giving

1 Dav

im (1.10)
aV=0 AV Dt

The Eulerian derivative is the
rate of change of a property
at a fixed location in space.
The material derivative is

the rate of change of a prop-
erty of a given piece of fluid,
which may be moving and so
changing its position.
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6 CHAPTER 1. FLUID FUNDAMENTALS

We will often write such expressions informally as

DAV _ avv o, (1.11)
Dt
with the limit implied.

Consider now the material derivative of some fluid property, & say,
multiplied by the volume of a fluid element, AV. Such a derivative arises
when £ is the amount per unit volume of £-substance — the mass density
or the amount of a dye per unit volume, for example. Then we have

D DAV D&
—(EAV) =& — + AV —. 1.12
5, GAV) =& -+ AV (1.12)
Using (1.11) this becomes
D DE)
—(EAV) = AV [ &V — |, 1.13
o (€av) = av (§9-v+ D8 (1.13)
and the analogous result for a finite fluid volume is just
D D&
o [ gav-| ( v. —> av. 114
Dt JVE v E v Dt ( )

This expression is to be contrasted with the Eulerian derivative for which
the volume, and so the limits of integration, are fixed and we have

d o&
4 dV:J 9 4. 115
dt ng v Ot ( )
Now consider the material derivative of a fluid property ¢ multiplied

by the mass of a fluid element, pAV, where p is the fluid density. Such
a derivative arises when ¢ is the amount of ¢-substance per unit mass
(note, for example, that the momentum of a fluid element is pvAV). The
material derivative of ppAV is given by

D D¢ D

— AV) = pAV — —(pAV). 1.16

Dt((pp )=p Dt+<PDt(P ) (1.16)
But pAV is just the mass of the fluid element, and that is constant — that
is how a fluid element is defined. Thus the second term on the right-hand
side vanishes and

D _ D¢ D 3 D¢
E(gopAV) = pAVa and D1 JV ppdV = «[v v dv,
(1.17a,b)

where (1.17b) applies to a finite volume. That expression may also be de-
rived more formally using Leibniz’s formula for the material derivative
of an integral, and the result also holds when ¢ is a vector. The result is
quite different from the corresponding Eulerian derivative, in which the
volume is kept fixed; in that case we have:

d d
L ppdv= j 9 (op)dv. 118
dt J;; ep v ot ((PP) ( )

Various material and Eulerian derivatives are summarized in the shaded
box on the facing page.
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1.2 THE MAss CONTINUITY EQUATION

Material and Eulerian Derivatives

The material derivatives of a scalar (¢) and a vector (b) field are
given by:

Dy 3 Db b
Dp _ 9 . vo. P _P w-vb DI
5 =3 T Ve =" + (- V) (D.1)

Various material derivatives of integrals are:

D Do 10
2 dv:J <— v. )dv:j <— v. )dV,
Dt JV(P v \ Dt Tevey v \ Ot " ((Pv)

(D.2)
D
—j dV:j V.vdv, (D.3)
Dt Jy %
D Do
= | poav=| pptav. D.4
Dt JVP(P VPDt ( )

These formulae also hold if ¢ is a vector. The Eulerian derivative
of an integral is:

d 0
C pav=| 224y, D.5
dt L 4 Jv ot (D-5)

so that

d d dpgp
2 dav=0 and —J dV=J—dV. D.6
dt ~|-V an dt Jy pe v Ot ( )

1.2 THE MAss CONTINUITY EQUATION

In classical mechanics mass is absolutely conserved and in solid-body me-
chanics we normally do not need an explicit equation of mass conserva-
tion. However, in fluid mechanics a fluid may flow into and away from a
particular location, and fluid density may change, and we need an equa-
tion to describe that change.

1.2.1  An Eulerian Derivation

We first derive the mass conservation equation from an Eulerian point
of view; that is, our reference frame is fixed in space and the fluid flows
through it. Consider an infinitesimal, rectangular cuboid, control volume,
AV = AxAyAz that is fixed in space, as in Fig. 1.1. Fluid moves into or out
of the volume through its surface, including through its faces in the y-z
plane of area AA = AyAz at coordinates x and x + Ax. The accumulation
of fluid within the control volume due to motion in the x-direction is
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8 CHAPTER 1. FLUID FUNDAMENTALS

Fig. 1.1: Mass conservation ]
in an Eulerian cuboid con- I
trol volume. The mass con- I
vergence, —0(pu)/dx (plus pUAY Az |
I

I

(pu + 8(2;);4) Ax)Ay Az
I —

contributions from the y
and z directions), must

be balanced by a density - —-_—— =1 - = ~ )
increase equal to dp/ot. b P

X X + Ax x

evidently

9(pu)
0x

Ax Ay Az. (1.19)

X,)52

AyAz[(pu)(x, y,2) — (pu)(x + Ax, y,2)] = —

To this must be added the effects of motion in the y- and z-directions,
namely
- M +M]AxAyAz. (1.20)
oy 0z
This net accumulation of fluid must be accompanied by a corresponding
increase of fluid mass within the control volume. This is

% (density x volume) = Ax Ay Azaa—f, (1.21)

because the volume is constant. Thus, because mass is conserved, (1.19),
(1.20) and (1.21) give

e[ 20,200 0w
o ox 0y 0z

=0. (1.22)

The quantity in square brackets must be zero and we therefore have

dp
F . =0. 1.23
3 +V-(pv) =0 (1.23)

This is called the mass continuity equation for it recognizes the continuous
nature of the mass field in a fluid. There is no diffusion term in (1.23), no
term like kV?p. This is because mass is transported by the macroscopic
movement of molecules; even if this motion appears diffusion-like, any
net macroscopic molecular motion constitutes, by definition, a velocity
field.

Neither (1.23) nor the derivation that leads to it depends in any way on
Cartesian geometry; a more general vector derivation using an arbitrary
control volume is left as an easy exercise for the reader.

1.2.2 Mass Continuity via the Material Derivative

We now derive the mass continuity equation (1.23) from a material per-
spective. This is the most fundamental approach of all since the princi-
ple of mass conservation states simply that the mass of a given element
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1.2 THE MAss CONTINUITY EQUATION

of fluid is, by definition of the element, constant. Thus, consider a small
mass of fluid of density p and volume AV. Then conservation of mass may
be represented by

D
—(pAV) = 0. 1.24
5; PAV) (1.24)
Both the density and the volume of the parcel may change, so
A
AV% +PM:AV(%+PV1}>=O, (125)
Dt Dt Dt

where the second expression follows using (1.11). Since the volume ele-
ment is non-zero the term in brackets must vanish and
Dp

— +pV-v=0.

D (1.26)

After expansion of the first term this becomes identical to (1.23). (A
slightly more formal way to derive this result uses (1.14) with & replaced
by p.) Summarizing, equivalent partial differential equations represent-
ing conservation of mass are

%+pv-v:0, %+V-(pv):0.

1.27ab
Dt ot (1.27a,b)

1.2.3 Incompressible Fluids

A near-universal property of liquids is that their density is nearly con-
stant; that is, they are essentially incompressible. 1f we write the density
as

p(x, ¥,2,t) = py + 8p(x, y,2,1), (1.28)

where p, is a constant, then a truly incompressible fluid has p = 0. No
fluid is incompressible in this strict sense so we relax the meaning slightly
and simply require |§p| <« p,. When this is satisfied the mass continuity
equation, (1.27a) takes on a different form. Equation (1.27a) may be writ-
ten, without approximation, as

D—8p+(p0+8p)v-v20.

D (1.29)

If the fluid is incompressible then the terms involving 8 p are much smaller
than those involving p, and hence may be neglected, giving

V-v=0. (1.30)

This is the mass continuity equation for an incompressible fluid, and its
satisfaction may be taken as the defining quality of an incompressible
fluid. The prognostic equation, (1.27) has become a diagnostic equation.

An incompressible fluid is
sometimes defined as one
whose density is not affected
by pressure. This definition
may usefully be generalized
to mean a fluid whose den-
sity is very nearly constant
(and so also not affected by
temperature or composition)
such that the mass continu-
ity equation takes the form
(1.30). That equation is nor-
mally a very good approxima-
tion for seawater, less so for
air.
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CHAPTER 1. FLUID FUNDAMENTALS

The viscous form of the fluid
dynamical equations of
motion was established by
Claude-Louis-Marie-Henri
Navier (1785-1836) a French
civil engineer, and George
Stokes (1819-1903), an Anglo-
Irish applied mathematician,
who further elucidated vis-
cous effects. Prior to their
work the great Swiss math-
ematician Leonard Euler
(1707-1783) had estab-
lished the general form of

the fluid equations for an in-
viscid incompressible flow,
namely the Euler equations.

The forces due to pressure
and viscosity are ‘contact
forces’ arising because of

the inter-molecular forces

and/or collisions in a fluid.
The net pressure force on a
fluid element is proportional
to the gradient of pressure.

1.3 THE MOMENTUM EQUATION

The momentum equation is a partial differential equation that describes
how the velocity or momentum of a fluid responds to internal and im-
posed forces. We derive it here using material methods, with a very heuris-
tic treatment of the terms representing pressure and viscous forces.

1.3.1 Advection

Let m(x, y, z, t) be the momentum-density field (momentum per unit vol-
ume) of the fluid. Thus, m = pv and the total momentum of a volume of
fluid is given by the volume integral J mdV. Now, for a fluid the rate of
change of momentum of an identifiable fluid mass is given by the material

derivative, and by Newton’s second law this is equal to the force acting on
it. Thus,
D

—J pvdV:J Fdv,
Dt Jv v

where F is the force per unit volume. Now, using (1.17b) (with ¢ replaced
by v) to transform the left-hand side of (1.31), we obtain

J <p&—F) dv =0.
v Dt

Because the volume is arbitrary the integrand itself must vanish and we
obtain

(1.31)

(1.32)

& =F or @ +@-V)v = E, (1.33a,b)
Dt ot

having used (1.5) to expand the material derivative. We have thus ob-
tained an expression for how a fluid accelerates if subject to known forces.
As well as external forces (like gravity), a stress arises from the direct con-
tact between one fluid parcel and another, giving rise to pressure and vis-
cous forces, sometimes referred to as contact forces.

1.3.2 Pressure and Viscous Forces
Pressure

Within or at the boundary of a fluid the pressure is the normal force per
unit area due to the collective action of molecular motion. Thus

dF, = -pds, (1.34)
where p is the pressure, Fp is the pressure force and dS an infinitesimal
surface element. If we grant ourselves this intuitive notion, it is a simple
matter to assess the influence of pressure on a fluid, for the pressure force
on a volume of fluid is the integral of the pressure over the its boundary
and so

F,=- LpdS. (1.35)
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1.3 THE MOMENTUM EQUATION

11

The minus sign arises because the pressure force is directed inwards,
whereas S is a vector normal to the surface and directed outwards. Ap-
plying a form of the divergence theorem to the right-hand side gives

F,= —JV Vpdv, (1.36)
where the volume V is bounded by the surface S. The pressure gradient
force per unit volume, F,, is therefore just =V p.

Viscosity

The effects of viscosity are apparent in many situations — the flow of trea-
cle or volcanic lava are obvious examples. The viscous force per unit vol-
ume is approximately equal to V*v, where p is the coefficient of viscosity.
With the pressure and viscous terms the momentum equation becomes,

% +@-Vv= —le +vV2v + F,,
P

o (1.37)

where v = u/p is the kinematic viscosity and F, represents body forces (per
unit mass) such as gravity, g. For most large-scale flows in the atmosphere
and ocean the viscous term is, in fact, neglibly small.

1.3.3 The Hydrostatic Approximation

Neglecting viscocity, the vertical component (the component parallel to
the gravitational force, g) of the momentum equation is

Dw__1%_ (138)
Dt p 0z
where w is the vertical component of the velocity and g = —gk. If the

fluid is static the gravitational term is balanced by the pressure term and
we have

op
£ = _pg, 1.39
dz P9 ( )

and this relation is known as hydrostatic balance, or hydrostasy. It is clear
in this case that the pressure at a point is given by the weight of the fluid
above it, provided that p = 0 at the top of the fluid. The flow need not be
static for hydrostasy to hold — equation (1.39) is a good approximation to
(1.38) provided that the vertical acceleration, Dw/Dt, is sufficiently small
compared to gravity, which is nearly always the case in both atmosphere
and ocean except in intense storms. However, because the pressure also
appears in the horizontal momentum equations, hydrostatic balance must
be very well satisfied to ensure that (1.39) provides an accurate enough
pressure to determine the horizontal pressure gradients, a point we re-
turn to in Section 3.2.

Equation (1.37) is sometimes
called the Navier—Stokes equa-
tion. If viscosity is absent the
equation is the Euler equa-
tion. Sometimes these names
are taken as applying to the
complete set of equations of
motion.

Hydrostatic balance is an ap-
proximation to the vertical
momentum equation, valid
for large-scale motion in both
atmosphere and ocean and
normally very well satisfied
for flows of horizontal scales
greater than a few tens of kilo-
metres. It is one of the most
fundamental and useful ap-
proximations in atmospheric
and oceanic dynamics.

© in this web service Cambridge University Press & Assessment

www.cambridge.org



www.cambridge.org/9781107692794
www.cambridge.org

