Contents

	Acknowledgements	page x
	PART I MATHEMATICAL RECREATIONS	
	AND ABSTRACT GAMES	1
	Introduction	1
	Everyday puzzles	5
1	Recreations from Euler to Lucas	9
	Euler and the Bridges of Königsberg	9
	Euler and knight tours	12
	Lucas and mathematical recreations	17
	Lucas's game of solitaire calculation	20
2	Four abstract games	23
	From Dudeney's puzzle to Golomb's Game	24
	Nine Men's Morris	25
	Hex	26
	Chess	29
	Go	35
3	Mathematics and games: mysterious connections	40
	Games and mathematics can be analysed in the head	40
	Can you 'look ahead'?	41
	A novel kind of object	42
	They are abstract	45
	They are difficult	45
	Rules	47
	Hidden structures forced by the rules	47
	Argument and proof	48

vi	Contents	
4	Certainty, error and truth Players make mistakes Reasoning, imagination and intuition The power of analogy Simplicity, elegance and beauty Science and games: let's go exploring	49 50 51 52 52 53
4	Why chess is not mathematics Competition Asking questions <i>about</i> Metamathematics and game-like mathematics Changing conceptions of problem solving Creating new concepts and new objects Increasing abstraction Finding common structures The interaction between mathematics and sciences	54 55 57 57 57 57 58 59 60
5	Proving versus checking The limitations of mathematical recreations Abstract games and checking solutions How do you 'prove' that 11 is prime? Is '5 is prime' a coincidence? Proof versus checking Structure, pattern and representation Arbitrariness and un-manageability Near the boundary	61 62 63 63 64 65 65 67
	PART II MATHEMATICS: GAME-LIKE, SCIENTIFIC AND PERCEPTUAL Introduction	73 73
6	Game-like mathematics Introduction Tactics and strategy Sums of cubes and a hidden connection A masterpiece by Euler	75 75 76 79 81
7	Euclid and the rules of his geometrical game Ceva's theorem Simson's line The parabola and its geometrical properties Dandelin's spheres	85 88 90 90 93

	Contents	vii
8	New concepts and new objects	95
	Creating new objects	96
	Does it exist?	98
	The force of circumstance	98
	Infinity and infinite series	99
	Calculus and the idea of a tangent	102
	What is the shape of a parabola?	105
9	Convergent and divergent series	108
	The pioneers	108
	The harmonic series diverges	110
	Weird objects and mysterious situations	111
	A practical use for divergent series	113
10	Mathematics becomes game-like	115
	Euler's relation for polyhedra	115
	The invention-discovery of groups	118
	Atiyah and MacLane disagree	120
	Mathematics and geography	121
11	Mathematics as science	122
	Introduction	122
	Triangle geometry: the Euler line of a triangle	123
	Modern geometry of the triangle	126
	The Seven-Circle Theorem, and other New Theorems	129
12	Numbers and sequences	131
	The sums of squares	131
	Easy questions, easy answers	133
	The prime numbers	133
	Prime pairs	134
	The limits of conjecture	135
	A Polya conjecture and refutation	136
	The limitations of experiment	136
	Proof versus intuition	140
13	Computers and mathematics	142
	Hofstadter on good problems	143
	Computers and mathematical proof	144
	Computers and 'proof'	146
	Finally: formulae and yet more formulae	147

viii	Contents	
14	Mathematics and the spinness	140
14	Mathematics and the sciences	148
	Scientists abstract	148
	Mathematics anticipates science and technology	148
	The success of mathematics in science	150
	How do scientists use mathematics?	151
	Methods and technique in pure and applied mathematics	152
	Quadrature: finding the areas under curves	153
	The cycloid	156
	Science inspires mathematics	160
15	Minimum paths: elegant simplicity	163
	A familiar puzzle	163
	Developing Heron's theorem	166
	Extremal problems	168
	Pappus and the honeycomb	169
16	The foundations: perception, imagination, insight	170
	Archimedes' lemma and proof by looking	171
	Chinese proofs by dissection	172
	Napoleon's theorem	173
	The polygonal numbers	176
	Problems with partitions	180
	Invented or discovered? (Again)	182
17	Structure	184
17	Pythagoras' theorem	185
	Euclidean coordinate geometry	105
	The average of two points	190
	The skew quadrilateral	192
	-	
18	Hidden structure, common structure	197
	The primes and the lucky numbers	197
	Objects hidden behind a veil	198
	Proving consistency	201
	Transforming structure, transforming perception	202
19	Mathematics and beauty	207
	Hardy on mathematics and chess	208
	Experience and expectations	209
	Beauty and Brilliancies in chess and mathematics	210
	Beauty, analogy and structure	210

	Contents	ix
	Beauty and individual differences in perception	212
	The general versus the specific and contingent	214
	Beauty, form and understanding	215
20	Origins: formality in the everyday world	217
	The psychology of play	219
	The rise and fall of formality	221
	Religious ritual, games and mathematics	222
	Formality and mathematics	223
	Hidden mathematics	224
	Style and culture, style in mathematics	225
	The spirit of system versus problem solving	227
	Visual versus verbal: geometry versus algebra	228
	Women, games and mathematics	229
	Mathematics and abstract games: an intimate connection	231
	References	234
	Index	243