BRIEF CONTENTS

Preface xix

- 1 A Grand Tour of the Heavens 1
- 2 Light, Matter, and Energy: Powering the Universe 21
- 3 Light and Telescopes: Extending Our Senses 37
- 4 Observing the Stars and Planets: Clockwork of the Universe 67
- **5** Gravitation and Motion: The Early History of Astronomy 95
- 6 The Terrestrial Planets: Earth, Moon, and Their Relatives 119
- 7 The Jovian Planets: Windswept Giants 167
- 8 Pluto, Comets, and Space Debris 197
- 9 Our Solar System and Others 233
- 10 Our Star: The Sun 255
- 11 Stars: Distant Suns 279
- 12 How the Stars Shine: Cosmic Furnaces 311
- 13 The Death of Stars: Recycling 331
- 14 Black Holes: The End of Space and Time 361
- 15 The Milky Way: Our Home in the Universe 383
- 16 A Universe of Galaxies 413
- 17 Quasars and Active Galaxies 451
- 18 Cosmology: The Birth and Life of the Cosmos 477
- **19** In the Beginning 509
- **20** Life in the Universe 541

Epilogue 559

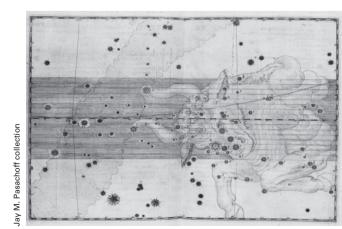
Appendix 1. Measurement Systems 561

Appendix 2. Basic Constants 561

Appendix 3. Planets and Dwarf Planets 562

Appendix 4. The Brightest Stars 564

Appendix 5. The Nearest Stars 566


Appendix 6. The Messier Catalogue 568

Appendix 7. The Constellations 570

Selected Readings 571

Glossary 575

Index 585

The constellation Taurus, the Bull, from the 1603 star atlas by Johann Bayer.

CONTENTS

Merging star clusters in 30 Doradus, in the Large Magellanic Cloud, imaged with the Hubble Space Telescope.

Preface xix

A GRAND TOUR OF THE HEAVENS 1

- 1.1 Peering through the Universe: A Time Machine 2
 Figure It Out 1.1: Keeping Track of Space and Time 3
- 1.2 How Do We Study Things We Can't Touch? 3
 Figure It Out 1.2: Scientific Notation 4
- 1.3 Finding Constellations in the Sky 4

The Autumn Sky 6
The Winter Sky 7

Star Party 1.1: Using the Sky Maps 8

The Spring Sky 10
The Summer Sky 10

- 1.4 How Do You Take a Tape Measure to the Stars? 10
- 1.5 The Value of Astronomy 11

The Grandest Laboratory of All 11

Origins 11

A Closer Look 1.1: A Sense of Scale: Measuring

Distances 12

- 1.6 What Is Science? 15
- 1.7 Why Is Science Far Better Than Pseudoscience? 16

LIGHT, MATTER, AND ENERGY: POWERING THE UNIVERSE 21

- 2.1 Studying a Star Is Like Looking at a Rainbow 22
- 2.2 "Blackbodies" and Their Radiation 22

Figure It Out 2.1: The Nature of Light 23

Figure It Out 2.2: Blackbody Radiation and Wien's

Law 24

Figure It Out 2.3: Blackbody Radiation and the

Stefan-Boltzmann Law 25

An artist's rendering of the Advanced Technology Solar Telescope with its 4-m-diameter mirror, now being erected on Haleakala, Maui, Hawaii.

Contents ix

2.3	What Are Those Missing Colors and Whe	re Are
	They? 25	

- 2.4 The Story Behind the Bohr Atom 27
- 2.5 The Doppler Effect and Motion 30
 Figure It Out 2.4: Temperature Conversions 31

LIGHT AND TELESCOPES: EXTENDING OUR SENSES 37

- 3.1 The First Telescopes for Astronomy 37
- 3.2 How Do Telescopes Work? 39
- 3.3 Modern Telescopes 41

Figure It Out 3.1: Light-Gathering Power of a
Telescope 42
Current Large Telescopes Around the World 42
Figure It Out 3.2: Changing Units 45
The Next Generation of Optical and Infrared
Ground-Based Telescopes 45

- 3.4 The Big Picture: Mapping the Sky 46
- 3.5 Amateurs Are Participating 48
- 3.6 Glorious Hubble After Initial Trouble 49
- 3.7 You Can't Look at the Sun at Night 51
- 3.8 How Can You See the Invisible? 52

 X-ray and Gamma-ray Telescopes 52

 Telescopes for Ultraviolet Wavelengths 54

 Infrared Telescopes 55

 Radio Telescopes 55

 The Major New Radio Projects 56

 Figure It Out 3.3: Angular Resolution of a Telescope 57

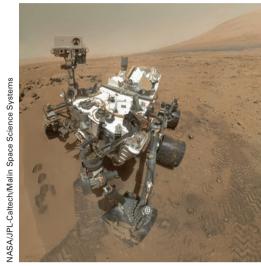
A Closer Look 3.1: A Night at Mauna Kea 59

OBSERVING THE STARS AND PLANETS: CLOCKWORK OF THE UNIVERSE 67

- 4.1 The Phases of the Moon and Planets 68
- 4.2 Celestial Spectacles: Eclipses 70Star Party 4.1: Observing Total Solar Eclipses 72

The frontispiece of Galileo's Dialogo, published in 1632.

Eerie Lunar Eclipses 73 A Closer Look 4.1: Colors in the Sky 74 Glorious Solar Eclipses 74


- 4.3 Twinkle, Twinkle, Little Star ... 76
- **4.4 The Concept of Apparent Magnitude 78**Figure It Out 4.1: Using the Magnitude Scale 78
- 4.5 Rising and Setting Stars 80
 A Closer Look 4.2: Photographing the Stars 80
 Figure It Out 4.2: Sidereal Time 81
- 4.6 Celestial Coordinates to Label the Sky 81
- 4.7 The Reason for the Seasons 82Star Party 4.2: The Paths of the Moon and Planets 83
- 4.8 Time and the International Date Line 85
- 4.9 Calendars 89
- 4.10 Keeping Time 90

GRAVITATION AND MOTION: THE EARLY HISTORY OF ASTRONOMY 95

5.1 A Brief Survey of the Solar System 95

(Contents

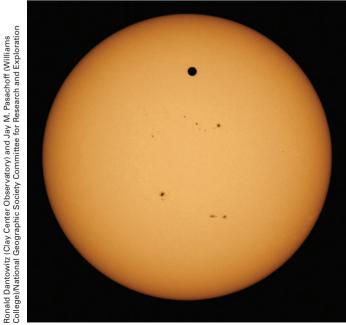
A self-portrait mosaic image of Curiosity, the lander of NASA's Mars Science Laboratory, with Gale Crater's Mount Sharp at background right.

Star Party 5.1: Prograde and Retrograde Motions 96

- 5.2 The Earth-Centered Astronomy of Ancient Greece 97
- 5.3 A Heretical Idea: The Sun-Centered Universe 98
 A Closer Look 5.1: Ptolemaic Terms 98
 Lives in Science 5.1: Copernicus 100
- 5.4 The Keen Eyes of Tycho Brahe 101

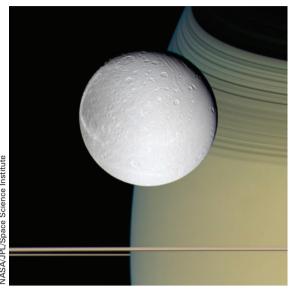
Kepler's Third Law 105

- 5.5 Johannes Kepler and His Laws of Orbits 101
 Lives in Science 5.2: Tycho Brahe 102
 Kepler's First Law 103
 Kepler's Second Law 103
 A Closer Look 5.2: Kepler's Laws 104
 Lives in Science 5.3: Johannes Kepler 104
- The Demise of the Ptolemaic Model: Galileo Galilei 105
 Figure It Out 5.1: Kepler's Third Law 106
 Lives in Science 5.4: Galileo Galilei 107
- 5.7 On the Shoulders of Giants: Isaac Newton 108
 Star Party 5.2: Galileo's Observations 109
 A Closer Look 5.3: Newton's Law of Universal
 Gravitation 110
 Figure It Out 5.2: Newton's Version of Kepler's Third
 Law 110
- 5.8 Clues to the Formation of Our Solar System 111
 Lives in Science 5.5: Isaac Newton 111
 Figure It Out 5.3: Orbital Speed of Planets 112


6

THE TERRESTRIAL PLANETS: EARTH, MOON, AND THEIR RELATIVES 119

- 6.1 Earth: There's No Place Like Home 120
 A Closer Look 6.1: Comparative Data for the Terrestrial Planets and Their Moons 120
 The Earth's Interior 121
 A Closer Look 6.2: Density 122
 Continental Drift 122
 Tides 124
 The Earth's Atmosphere 124
- The Moon 127
 The Moon's Appearance 127
 The Lunar Surface 130
 A Closer Look 6.3: The First People on the Moon 130
 The Lunar Interior 135
 The Origin of the Moon 135
 Rocks from the Moon 136
- 6.3 Mercury 137


 The Rotation of Mercury 137

The Van Allen Belts 127

Venus's silhouette shows, as do sunspots, in the middle of the six-hour transit of Venus across the face of the Sun on June 5/6, 2012.

Contents Xi

Saturn's moon Titan in front of the planet and its rings, from NASA's Cassini spacecraft in 2012.

Mercury's History 138

A Closer Look 6.4: Naming the Features of Mercury 139 Mercury Observed from the Earth 139

Spacecraft Views of Mercury 139

Mercury Research Rejuvenated 141

Mercury from MESSENGER 141

Continuing Exploration of Mercury 143

6.4 Venus 143

Transits of Venus 143

The Atmosphere of Venus 144

The Rotation of Venus 144

Why Is Venus So Incredibly Hot? 145

Spacecraft Observations of Venus's Atmosphere 146

Radar Observations of Venus's Surface 147

Venus Exploration in the 21st Century 149

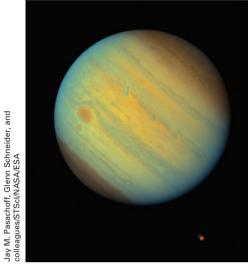
6.5 Mars 149

Characteristics of Mars 150

Mars's Surface 151

Mars's Atmosphere 152

A Closer Look 6.5: Mars Exploration Rovers,


Mars Phoenix, and Mars Science Lab's Rover

Curiosity 155

Mars's Satellites 157

The Search for Life on Mars 157

Crewed Missions to Mars 160

Jupiter with the Hubble Space Telescope, a composite of an ultraviolet and an infrared image made as part of one of the authors' observations made in 2012 while a transit of Venus as seen from Jupiter was dimming that giant planet by 0.01%.

7

THE JOVIAN PLANETS: WINDSWEPT GIANTS 167

7.1 Jupiter 168

A Closer Look 7.1: Comparative Data for the Major

Worlds 168

Star Party 7.1: Observing the Giant Planets 169

Spacecraft to Jupiter 169

Figure It Out 7.1: The Size of Jupiter 169

The Great Red Spot 170

Jupiter's Atmosphere 170

Jupiter's Interior 172

Jupiter's Magnetic Field 172

Jupiter's Ring 173

Jupiter's Amazing Satellites 173

A Closer Look 7.2: Jupiter and Its Satellites in Mythology 176

7.2 Saturn 177

Saturn's Rings 177

Saturn's Atmosphere 179

Saturn's Interior and Magnetic Field 179

Saturn's Moon Titan 181

A Closer Look 7.3: Saturn's Satellites in Mythology 181

A Closer Look 7.4: Saturn's Rings and Moons from

Cassini 183

XII Contents

The shadow of the Moon surrounds the eclipsed Sun in this view from a helicopter, above an Australian cloud-deck, of the 2012 total solar eclipse; we see the solar corona surrounding the dark silhouette of the Moon

Saturn's Other Satellites 184

7.3 Uranus 184

Uranus's Atmosphere 185

Uranus's Rings 185

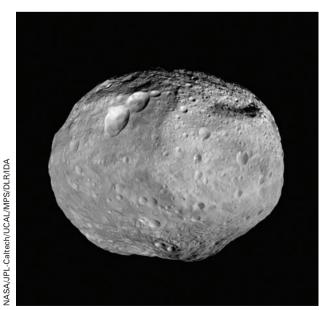
A Closer Look 7.5: Uranus and Neptune in

Mythology 185

Uranus's Interior and Magnetic Field 187

7.4 Neptune 187

Neptune's Atmosphere 188


Neptune's Interior and Magnetic Field 189

Neptune's Rings 190

Neptune's Moon Triton 190

A Closer Look 7.6: Naming the Rings of Neptune 192

7.5 The Formation of the Giant Planets 192

The asteroid (4) Vesta, a mosaic of the highest-resolution images from NASA's Dawn spacecraft, which is now en route to (1) Ceres.

8

PLUTO, COMETS, AND SPACE DEBRIS 197

8.1 Pluto 198

Pluto's Mass and Size 198

Pluto's Atmosphere 200

What Is Pluto? 201

8.2 Kuiper-Belt Objects and Dwarf Planets 202

A Closer Look 8.1: Dwarf Planets 202

8.3 Comets 204

The Composition of Comets 205

The Origin and Evolution of Comets 206

Halley's Comet 207

Comet Shoemaker-Levy 9 209

Recently Observed Comets 210

Spacecraft to Comets 210

A Closer Look 8.2: Deep Impact 214

8.4 Meteoroids 215

Types and Sizes of Meteorites 215

A Closer Look 8.3: February 15, 2013 – An Exploding

Meteor; A Nearby Asteroid 216

Meteor Showers 218

A Closer Look 8.4: Meteor Showers 218

8.5 Asteroids 219

General Properties of Asteroids 219

Star Party 8.1: Observing a Meteor Shower 220

A Closer Look 8.5: The Extinction of the Dinosaurs 220

Asteroids Viewed Close Up 222

Near-Earth Objects 223

A Closer Look 8.6: Images from Curiosity on Mars 231

9

OUR SOLAR SYSTEM AND OTHERS 233

9.1 The Formation of the Solar System 234

Collapse of a Cloud 234

Models of Planet Formation 235

9.2 Extra-solar Planets (Exoplanets) 236

Contents XIII

The diamond ring effect along with reddish chromosphere and prominences mark the end of the 2012 total solar eclipse observed from Australia.

Astrometric Method 237
Timing of Radio Pulsars 237
Periodic Doppler Shifts: The Doppler-Wobble Method 237
Transitioning Planets: The Blink Method 240
Direct Imaging of Exoplanets 244
Gravitational Microlensing 244

- 9.3 The Nature of Exoplanet Systems 244
- 9.4 Goldilocks Planets 246
- 9.5 Brown Dwarfs 246
- 9.6 Planetary Systems in Formation 246

10

OUR STAR: THE SUN 255

10.1 What Is the Sun's Basic Structure? 256

The Photosphere 257

A Closer Look 10.1: The Most Common Elements in the

Sun's Photosphere 258

The Chromosphere 259

The Corona 260

The Scientific Value of Eclipses 265

10.2 Sunspots and Other Solar Activity 265

What Are Those Blemishes on the Sun? 265

Star Party 10.1: Observing Sunspots 266

The Solar-Activity Cycle 267

Fireworks on the Sun, and Space Weather 269

Filaments and Prominences 269

10.3 The Sun and the Theory of Relativity 270

Lives in Science 10.1: Albert Einstein 271

A Closer Look 10.2: Solar Eclipses of 2013 277

STARS: DISTANT SUNS 279

11.1 Colors, Temperatures, and Spectra of Stars 280

Taking a Star's Temperature 280 How Do We Classify Stars? 281 The Coolest Stars 282

11.2 How Distant Are the Stars? 282

Figure It Out 11.1: Stellar Triangulation 284

11.3 How Powerful Are the Stars? 285

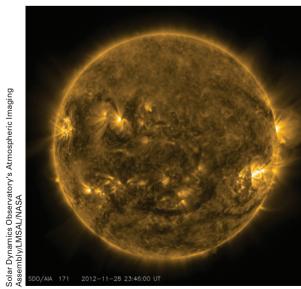
A Closer Look 11.1: Using Absolute Magnitudes 286
Figure It Out 11.2: The Inverse-Square Law 286

11.4 Temperature-Luminosity Diagrams 287

Figure It Out 11.3: A Star's Luminosity 289

A Closer Look 11.2: Proxima Centauri: The Nearest Star

Beyond the Sun 289


11.5 How Do Stars Move? 290

Proper Motions of Stars 290 Radial Velocities of Stars 290

11.6 "Social Stars": Binaries 292

Daire of Ctare and Their Hose 200

Pairs of Stars and Their Uses 292

A view of the Sun in the extreme ultraviolet part of the spectrum, showing million-degree gas held in place by the solar magnetic field.

XIV Contents

Figure It Out 11.4: Doppler Shifts 293 Figure It Out 11.5: Binary Stars 294

A Closer Look 11.3: A Sense of Mass: Weighing Stars 297

How Do We Weigh Stars? 297

The Mass-Luminosity Relation 297

Figure It Out 11.6: The Mass-Luminosity Relation 298

11.7 Stars That Don't Shine Steadily 298

11.8 Clusters of Stars 300

Open and Globular Star Clusters 300

A Closer Look 11.4: Star Clusters in Our Galaxy 302

How Old Are Star Clusters? 303

A Closer Look 11.5: How We Measure Basic Stellar

Parameters 305

12

HOW THE STARS SHINE: COSMIC FURNACES 311

12.1 Starbirth 312

Collapse of a Cloud 312

The Birth Cries of Stars 314

- 12.2 Where Stars Get Their Energy 317
- 12.3 Atoms and Nuclei 317

Figure It Out 12.1: Energy Generation in the Sun 318

Subatomic Particles 318

An optical and x-ray composite image of a supernova remnant, incorporating Hubble Space Telescope images showing the pink optical shell surrounding the x-ray images, shown in blue and green, from the Chandra X-ray Observatory. The supernova came from a supergiant star that exploded (Type Ia) 400 years ago in the Large Magellanic Cloud. The bubble is 23 light-years across.

Isotopes 318

Radioactivity and Neutrinos 319

- 12.4 Stars Shining Brightly 320
- 12.5 Why Stars Shine 320
- 12.6 Brown Dwarfs 321

12.7 The Solar-Neutrino Experiment 322

Initial Measurements 322

Further Solar-Neutrino Experiments 323

Beyond Solar Neutrinos 324

12.8 The End States of Stars 325

13

THE DEATH OF STARS: RECYCLING 331

13.1 The Death of the Sun 332

Red Giants 332

Planetary Nebulae 333

White Dwarfs 334

Summary of the Sun's Evolution 336

Binary Stars and Novae 336

13.2 Supernovae: Stellar Fireworks! 337

Core-Collapse Supernovae 338

White-Dwarf Supernovae (Type Ia) 339

Observing Supernovae 341

Supernova Remnants 343

Supernovae and Us 343

Supernova 1987A! 343

A Closer Look 13.1: Searching for Supernovae 344

Cosmic Rays 348

13.3 Pulsars: Stellar Beacons 349

Neutron Stars 349

The Discovery of Pulsars 349

What Are Pulsars? 350

The Crab, Pulsars, and Supernovae 351

Slowing Pulsars and Fast Pulsars 352

Binary Pulsars and Gravitational Waves 352

A Pulsar with a Planet 355

X-ray Binaries 355

Contents XV

1	A
4	+
_	

BLACK HOLES: THE END OF SPACE AND TIME 361

- 14.1 The Formation of a Stellar-Mass Black Hole 362
- 14.2 The Photon Sphere 362
- 14.3 The Event Horizon 363

 A Newtonian Argument 363

 Black Holes in General Relativity 36
- 14.4 Time Dilation 364
- 14.5 Properties of Black Holes 365
 Rotating Black Holes 365
 Measuring Black-Hole Spin 366
- 14.6 Passageways to Distant Lands? 367
- 14.7 Detecting a Black Hole 367

 Hot Accretion Disks 367

 Cygnus X-1: The First Plausible Stellar-Mass Black
 Hole 368

 Other Black-Hole Candidates 369

 Figure It Out 14.1: Binary Stars and Kepler's Third Law 36

 The Strange Case of SS433 370
- 14.8 Supermassive Black Holes 371
- 14.9 Moderation in All Things 373
- 14.10 Gamma-ray Bursts: Birth Cries of Black Holes? 374

 How Far Away Are Gamma-ray Bursts? 374

 Models of Gamma-ray Bursts 375
- 14.11 Mini Black Holes 376

THE MILKY WAY: OUR HOME IN THE UNIVERSE 383

- 15.1 Our Galaxy: The Milky Way 384
- 15.2 The Illusion That We Are at the Center 384
 Star Party 15.1: Observing the Milky Way 386
- 15.3 Nebulae: Interstellar Clouds 386
- 15.4 The Parts of Our Galaxy 388
- 15.5 The Center of Our Galaxy 391
- 15.6 All-Sky Maps of Our Galaxy 393

- 15.7 Our Pinwheel Galaxy 397
- 15.8 Why Does Our Galaxy Have Spiral Arms? 39
- 15.9 Matter Between the Stars 399
- 15.10 Radio Observations of Our Galaxy 400
- 15.11 Mapping Our Galaxy 401
- 15.12 Radio Spectral Lines from Molecules 403
- 15.13 The Formation of Stars 403
- 15.14 At a Radio Observatory 406

16

A UNIVERSE OF GALAXIES 413

- 16.1 The Discovery of Galaxies 414The Shapley-Curtis Debate 414Galaxies: "Island Universes" 416
- 16.2 Types of Galaxies 417
 Spiral Galaxies 417
 Elliptical Galaxies 420
 Other Galaxy Types 421
- 16.3 Habitats of Galaxies 421
 Clusters of Galaxies 422
 Superclusters of Galaxies 424
 Star Party 16.1: Observing Galaxies
- 16.4 The Dark Side of Matter 428
 The Rotation Curve of the Milky Way Galaxy 428
 Dark Matter Everywhere 428

NGC 3314, a chance alignment of two distant galaxies, imaged with the Hubble Space Telescope. The galaxies are actually separated by a distance ten times that of our galaxy from the Andromeda galaxy and are about 140 million light-years from us.

xvi Contents

Figure It Out 16.1: Calculating the Mass from the Rotation Curve 429 What Is Dark Matter? 430

- 16.5 Gravitational Lensing 430
- 16.6 The Birth and Life of Galaxies 433
- 16.7 The Expanding Universe 434

 Figure It Out 16.2: Redshifts and Hubble's Law 436

 Figure It Out 16.3: Using Hubble's Law to Determine

Distances 436

- 16.8 The Search for the Most Distant Galaxies 437
 Figure It Out 16.4: Relativistic Effects 437
- 16.9 The Evolution of Galaxies 440
- 16.10 Evolution of Large-Scale Structure 443

17

QUASARS AND ACTIVE GALAXIES 451

- 17.1 Active Galactic Nuclei 452
- 17.2 Quasars: Denizens of the Distant Past 454
 The Discovery of Quasars 454
 Puzzling Spectra 455
 The Nature of the Redshift 456
- 17.3 How Are Quasars Powered? 458

 A Big Punch from a Tiny Volume 458

 What Is the Energy Source? 458

 Accretion Disks and Jets 459
- 17.4 What Are Quasars? 460
- 17.5 Are We Being Fooled? 462
- 17.6 Finding Supermassive Black Holes 464
 Figure It Out 17.1: The Central Mass in a Galaxy 465
- 17.7 The Effects of Beaming 467
- 17.8 Probes of the Universe 470

COSMOLOGY: THE BIRTH AND LIFE OF THE COSMOS 477

- 18.1 Olbers's Paradox 478
- 18.2 An Expanding Universe 479

Hubble's Law 479 Expansion Without a Center 480

What Is Actually Expanding? 482

18.3 The Age of the Universe 483

Finding Out How Old 483
The Quest for Hubble's Constant 483

Figure It Out 18.1: The Hubble Time 484

A Key Project of the Hubble Space Telescope 485

Deviations from Uniform Expansion 487

Type Ia Supernovae as Cosmological Yardsticks

18.4 The Geometry and Fate of the Universe 490

The Cosmological Principle: Uniformity 490
No "Cosmological Constant"? 490

Three Kinds of Possible Universes 491

Figure It Out 18.2: The Critical Density and $\Omega_{\rm M}$ 492

Two-Dimensional Analogues 493

What Kind of Universe Do We Live In? 493

A Closer Look 18.1: Finite Flat and Hyperbolic

Universes 495

Obstacles Along the Way 495

18.5 Measuring the Expected Deceleration 496

The High-Redshift Hubble Diagram 497
Type Ia (White-Dwarf) Supernovae 497
An Accelerating Universe! 498
Einstein's Biggest Blunder? 499
Dark Energy 500
The Cosmic Jerk 501

18.6 The Future of the Universe 502

A cluster of galaxies 4.5 billion light-years away, in a Hubble Space Telescope survey that is mapping dark matter.

Contents XVII

The Hubble Space Telescope's eXtreme Deep Field (XDF), a small patch of sky at the center of the Hubble Ultra Deep Field assembled from 10 years of observations.

19

IN THE BEGINNING 509

19.1 The Steady-State Theory 510

19.2 The Cosmic Microwave Radiation 511
 A Faint Hiss from All Directions 511
 Origin of the Microwave Radiation 512

19.3 Deviations from Isotropy 513

Ripples in the Cosmic Microwave Background 513
The Overall Geometry of the Universe 515
The Wilkinson Microwave Anisotropy Probe (WMAP) 516
A Closer Look 19.1: Planck Maps the Cosmic Background
Radiation 518
Ground-Based Telescopes for the Cosmic Background
Radiation 521
The Planck Spacecraft 521

19.4 The Early Universe 522

Going Back in Time 522

A Brief History of the Early Universe 522

Primordial Nucleosynthesis 525

19.5 The Inflationary Universe 526

Problems with the Original Big-Bang Model 526
Inflation to the Rescue 527
Forces in the Universe 528
Figure It Out 19.1: Inflation of the Early Universe 529
Supercooling the Universe 531

Successes of Inflation 532
The Ultimate Free Lunch? 532
Figure It Out 19.2: Heisenberg's Uncertainty
Principle 533

19.6 A Universe of Universes 533

19.7 A Universe Finely Tuned for Life? 534

20

LIFE IN THE UNIVERSE 541

20.1 The Origin of Life 543

20.2 Life in the Solar System 544

20.3 Suitable Stars for Intelligent Life 544

20.4 The Search for Extraterrestrial Intelligence 545 Figure It Out 20.1: Interstellar Travel and Einstein's Relativity 546

20.5 Communicating with Extraterrestrials 549

20.6 The Statistics of Intelligent Extraterrestrial Life 550

The Drake Equation 550
Where Is Everyone? 551
Figure It Out 20.2: The Drake Equation 553

20.7 UFOs and the Scientific Method 553
UFOs 554
Of Truth and Theories 554

20.8 Conclusion 555

Epilogue 559

Appendix 1. Measurement Systems 561

Appendix 2. Basic Constants 561

Appendix 3. Planets and Dwarf Planets 562

Appendix 4. The Brightest Stars 564

Appendix 5. The Nearest Stars 566

Appendix 6. The Messier Catalogue 568

Appendix 7. The Constellations 570

Selected Readings 571

Glossary 575

Index 585