

Index

326-327, 350-352 Ackermann angle, 65-69 active safety technologies (AST), 322-323, actuator, 7-9, 16, 25, 30, 133, 137, 152, 198, 217 adaptive cruise control. See autonomous cruise control adhesion coefficient. See tire-road friction coefficient advanced traffic management systems (ATMS), 310-312 advanced traveler information systems (ATIS), 312-314 advanced vehicle control systems (AVCS), 314-318 aerodynamic drag force, 5, 57-59, 153 air supply system, 39-41, 43, 190, 198 air-fuel ratio, 9, 11-16, 33-38, 49, 119 airbags, 93-94 algebraic Ricatti equation, 289, 291, 295 algorithm development, 26-27 algorithm implementation, 27-28 algorithm in the loop testing, 29 all-electric range, 178 all-wheel drive (AWD), 8, 131-138, 148, 257 anode, 188, 191-195 anthropometry, 93 anti-lock braking system (ABS), 8, 15-17, 93-97, 102, 232 – 234, 236, 241 – 254, 257, 263, 323anti-skid braking. See anti-lock braking system anti-spin acceleration, 233, 250-251. See also control, traction autocoding, 27-28 Autocruise, 332-333, 337 automated highway system (AHS), 4, 94, 345, automated lane following, 352-356 automated steering, 315, 352–358 autonomous cruise control (ACC), 213, 219, 224-229, 332, 337, 345 autonomous guided vehicles, 323-324

accidents, 4, 94, 97-98, 310-311, 315-316, 322-323,

battery tax, 158, 163 beta (β) method, 258 bicycle model, 63-64 biomechanics, 93 block diagram, 363, 375-376 body. See chassis bottom dead center (BDC), 35 brake force, 60, 233, 257-258 brake pressure, 16, 232–234, 258, 261 brake specific fuel consumption (BSFC), 12, 37, 155-159, 166, 169-170 brake steer, 257 brakes, 7 camber angle, 57, 389 camshaft, 15, 34 CAN bus, 16-17, 30, 152 cascade studies, 25 catalytic converter. See two-way catalytic converter (TWC) cathode, 188-198 cell temperature, 191, 195 center of gravity (CG), 54-55, 385 certainty equivalence principle, 289 characteristic speed, 66-67 charge depleting (CD) mode, 178, 181 charge sustaining (CS) mode, 178, 181, 183 chassis, 6 choked flow, 40, 47-48 crashworthiness, 322 circadian dip of alertness, 99 closed-loop testing, 28-29 closed-loop. See control, feedback cognitive engineering, 93 collision avoidance, 102, 314-315, 322-328 combined-slip tire model, 263-268 combustion, 6, 9, 13, 36-37, 41, 44, 48, 119, commercial vehicle operation (CVO), 314-315 communication network, 16-18

battery charge sustainability, 183

392 Index

communication	controlled vehicle, 225–228
intervehicle, 317–318, 338, 340, 345	controller, 8, 11
vehicle-to-infrastructure, 317-318, 338	in the loop testing, 29
compensatory behavior, 102–103, 106	module, 21, 28
compression stroke, 33–35	convolution, 372
compressor, 190–192, 196–201	cooling, 190, 198, 204
congestion, 3–5, 309–312, 332	cornering forces, 65
constant time-gap headway policy, 345	cornering stiffness, 65–66
constant-spacing headway policy, 345	corporate average fuel economy (CAFE), 322
control, 363	course angle, 55
adaptive, 11, 219–223, 302	crank angle domain, 47–49
air-fuel ratio, 8–9, 11–12, 37, 119–122	crankshaft, 15, 33–34
body, 7–8	critical speed, 66–67
clutch, 131–146	crossover frequency, 95, 100
cruise, 5, 8, 14, 213–219, 332–337	crossover model principle, 95
derivative (D), 11	cycle beating, 177
electronic transmission, 8–9, 14, 38	<i>y</i> ,
engine, 5–7, 33, 126, 232–233, 333	damping ratio, 121, 218, 222, 383
exhaust gas recirculation, 4, 7–9, 13, 16, 33–38,	dead reckoning. See inertial navigation
40, 44, 126, 153, 177	degree-of-freedom (DOF), 70, 385
feedback, 8, 11, 107, 119, 141, 178, 226, 290, 294,	delay, 36, 43–44, 49, 103–110, 119–122, 138–146
335, 355, 364–369	development cycle, 22–24
feedforward, 14, 138, 163, 274, 335, 365	difference equations, 210–221
fuel injection, 7, 33	differential, 6, 257
headway, 213, 224–229, 317	differential braking, 3, 257–258, 266, 326–327, 352
idle speed, 8–9, 14, 38, 126–128	distributed computing, 17
Integral (I), 11	disturbance input, 8–9, 364
integrated vehicle, 132	dog actuator, 133–134
lambda, 119	drag torque. See torque, load
line pressure, 133	drawbar force, 58
load-leveling, 148, 166–168	drivability, 4, 33, 131, 178, 204
lockup, 131–133	drive cycle, 153, 160, 163, 165, 168, 203, 207–208
optimal. See optimal control	driver adaptation, 94–95, 97–98
piecewise, 138–146	driver model, longitudinal, 109–111
point-follower, 338	MacAdam's, 102, 106–107
powertrain, 7–8	predictive or preview, 106–109
preview, 107, 333–337	transfer function, 102–104
proportional (P), 8, 11, 369, 377–381	driveshaft, 6, 14-15, 62
proportional plus derivative (PD), 11	drivetrain, 6, 62-63, 132, 148, 205
proportional plus integral (PI), 8, 11, 14, 120–122, 141, 214–222, 333–335, 377–381	driving simulators, 94–95, 97–98, 100–101, 352
proportional plus integral plus derivative	earth-fixed reference frame. See inertial reference
(PID), 8, 11, 217–219, 222–223, 377–381	frame
roll. See rollover prevention	eigenvalue assignment. See pole placement
rule-based, 176, 244–248, 254	electro-rheological fluid, 288
self-tuning, 220	electrolysis, 187
sideslip, 267	electronic control unit (ECU), 7, 16, 21, 152–153,
sliding mode, 249–250	177
spark timing, 8–9, 13–14, 124–125, 126–128	electronic rumble strip, 327, 352
state-feedback, 226–229, 290–291, 294, 382–384	Electronic Stability Program (ESP). <i>See</i> control, vehicle stability
supervisory, 17, 152–153, 157, 178–179	electronic transmission control, 131–132
thermostat, 157–164	emissions, 4, 9, 12–13, 35–38, 119, 124, 131, 148,
traction, 6, 232–234, 247–254	158, 180, 311
vehicle stability (VSC), 257–261, 266–268	energy management algorithms, 18
vehicle-follower, 338	energy storage device, 148
vehicle, 7–8	engine, 6, 33–37
yaw, 266–267	block vibrations, 124
controlled system, 8	control unit (ECU). See electronic control unit
controlled variable, 8	crank, 38

Index 393

cycle, 33–35	handcoding, 27
damage, 124	hardware in the loop (HIL), 28–31
diagnostics, 46–47	heading angle, 55, 105, 328
four stroke, 33, 39	heave, 81
friction, 36	Hough transformation, 349
induction map, 44	human factors engineering, 93
inertia, 36, 41, 45	humidification, 189-190, 196, 198
internal combustion (ICE), 6, 33–37, 39,	hybrid electric vehicle (HEV), 5, 148, 201
148–150, 155–158, 163, 166	hybrid electric vehicle, micro, 149
load, 41, 45, 126	parallel, 148–153, 166–172
pumping, 36, 43	power split, 148–153, 177–178
spark ignition (SI), 6, 33–37, 39	series, 148–153, 157–166
sweet spot, 155, 158	hybrid electric vehicle, plug-in (PHEV), 178–183
volumetric efficiency, 47–48	hybrid vehicle, 5, 17, 148–152
warm-up, 38	hydrogen supply system, 190, 196, 198
Environmental Protection Agency (EPA) Cycle.	hysteresis, 120, 158
See drive cycle	nysteresis, 120, 130
·	ideal and law 25, 40, 42, 49
equilibrium, 214–218	ideal gas law, 35, 40, 43, 48
equivalent consumption minimization strategy	ignition timing. See spark timing
(ECMS), 173–175	in-hub motors, 148–149
equivalent fuel consumption, 172	incident management, 311–312
erasable programmable read only memory	induction stroke, 33–35
(EPROM), 332	induction-to-power (IP) delay, 36, 43–44, 138–146
ergonomics, 93	inertial navigation, 313, 328
error signal, 365	inertial reference frame, 55-56, 385-386
exhaust gas recirculation (EGR), 7–9, 13, 16,	initial value theorem, 371
33–38	inputs, 8–9, 363
exhaust stroke, 33–35	instability, 368–369
expansion stroke. See power stroke	instrumentation, 7
	integrated motor assist (IMA), 150
fail-safe characteristics, 150	intelligent cruise control. See autonomous cruise
final value theorem, 371	control
fishhook maneuver, 262, 264	intelligent transportation system (ITS), 4–5, 94,
flexible driving, 131–132	309–318, 324, 332, 348
Flexray, 16	intelligent vehicle-highway system (IVHS).
foolproof design, 132	See intelligent transportation system
four-wheel drive (4WD), 7–8, 135–137,	invariant equation, 85
232	ionization reaction, 189
four-wheel-steering (4WS), 6, 8, 272–283	
frequency response, 100, 273, 278, 292, 374	Kalman filter, 294–296, 351–352
friction ellipse tire model, 57–58	kinetic energy, 385–388
friction plate, 133–137	knock, 36–37, 124–125
front wheel drive (FWD), 7, 64, 69, 89	
front wheel steering (FWS), 272–283	Lagrange's method, 56, 385–387
fuel	lambda-mu curve, 236–237
economy, 4, 153, 163–166, 172–178,	lane
180–183	change maneuver, 281–283
efficiency, 5, 208, 322	geometry, 351–352
injection, 4, 16, 36, 44	markers, 349, 351
system, 36, 48–49	sensing, 348–352
fuel-cell stack, 187–193	tracking, 348, 350–351
fuel-cell stack, 167–175 fuel-cell vehicle, 4–5, 187–188, 201–208	lane-departure accidents. See single-vehicle
	•
fuel-cell, 151, 158, 176, 187–188	road-departure (SVRD) accidents
liddit- 205	Laplace transform, 10, 370–372
generalized coordinate, 385	Laplace transform, properties, 371
generalized force, 385	lateral acceleration, 15, 67–68, 74, 258, 267–268,
generator, 148–152, 177–181	273–274, 284
global positioning system (GPS), 7, 94, 225,	lead vehicle, 213, 224–230
312–314, 348	level-holding phase, 133
grade, 59–62, 163, 213–214, 225, 333–336	LIN bus, 16

394 Index

linear quadratic (LQ) control. See optimal control path planning, 101 path projection, 350-352 linearization, 42, 72, 90, 214 percentage of road departure (PRD), 99-101 loop gain, 367 lumped parameter models, 54 performance index, 291 piecewise affine system (PWA), 138-141 Lyapunov equation, 86 pitch, 55, 386 Lyapunov stability, 139, 145 planetary gear, 149–151, 177–178 magic formula. See Pacejka tire model plant, 10, 364 manifold air pressure (MAP), 8, 10, 14, plate friction coefficient, 140 37 platooning, 224, 315, 317-318, 337-343 manifold filling dynamics, 41, 43 plug-n-play, 18 manifold, intake, 35, 41, 43 pneumatic tire, 55, 57, 234-235 supply and return, 191-192 pole placement, 222, 226, 230, 382-384 map matching, 312 poles, 376-377 mass airflow, 42-43, 47-48, 128 power management, 176, 203-204 maximum percentage overshoot, 121 power spectral density (PSD), 77-79 measurement noise, 368 power stroke, 33-35 powertrain, 6 mechatronics, 3-5 membrane hydration model, 193, 195 precognitive behavior, 102 message chips, 332-333 primary power source, 148, 155 minimum spark advance for best torque (MBT), proton exchange membrane (PEM), 189 12-13, 36-37 pursuit behavior, 102 mobility, 3-5 model-based design, 21-22 quantization, 340 motion sickness, 86 quarter-car model, 81 multi-input multi-output (MIMO), 9-10, 199-203 ramp following, 133 ramp-metering, 310-311 range, 110, 213, 225-227, 324-326 National Advanced Driving Simulator, 98 National Highway Transportation Safety extender, 148 Association (NHTSA), 4, 232, 352 rate, 110, 324-326 natural frequency, 121, 382-383 rattle space. See suspension stroke navigation, 93-94, 101, 312-313, 324 reactant partial pressure, 191, 195 near obstacle detection, 324 rear-wheel drive (RWD), 64, 89 networked control system, 18 rear-wheel steering (RWS), 272-283 neutral steer, 65-67 recursive least squares (RLS), 50, 219-221, Newton's second law, 36, 45, 54-56, 58, 63-64, 66-67, 69-70, 234 reference (set-point) input, 8-9, 108, 203, 213, 224, noise vibration harshness (NVH), 153, 167 226, 364, 383 non-minimum phase (NMP), 273 regenerative braking, 148-149, 181, 184 requirements, 21-25 reversible power source, 148 observer, 138-141, 356 disturbance, 141, 365 ride model, 81-86 open-loop, 138 ride quality, 85-86, 287 open-loop. See control, feedforward risk homeostasis theory, 95-97, 101 optimal control, 8, 11, 289-290 road condition, 232, 250 dynamic programming (DP), 176–178 road departure accidents. See single-vehicle frequency shaped linear quadratic (FSLQ), road-departure (SVRD) accidents 355 road model, 77-79 linear quadratic (LQ), 126-127, 289, 291 roll, 55, 385 rolling resistance force, 57-59, 153-155, 181 linear quadratic Gaussian (LQG), 294-295 optimal operating points line (OOP-Line), rollover prevention, 261, 266-268 179-180 root locus method, 215, 379-382 Otto gasoline engine, 33 route planning, 312 outputs, 8-9, 363 run-off-road. See single-vehicle road departure oversteer, 65-67 oxygen, 187-189 safe distance, 326 safety, 4, 309-318 Pacejka tire model, 57, 236-238, 258-260, 264 active, 322-323 Padé approximation, 104 passive, 322-323

Index 395

saturation, 340	state-of-charge (SOC), 153, 157–166, 172–173,
sensitivity, 368	176–184
sensor, 8, 14, 323–326	static stability factor (SSF), 267
acceleration, 15	steer angle, 55, 64, 103
crankshaft angular position and speed, 15	steering, 6
exhaust gas oxygen (EGO), 8, 12, 15, 37,	stoichiometric, 9, 12, 35–37, 119
119–121	stopping distance and time, 61
forward-looking, 324	string stability, 343–345
infrared, 324	suspension, 6–7, 287–288
knock, 15	active, 7, 81-82, 287-303
laser, 323	passive, 81–82, 86–88, 287–290
linear variable differential transformer	semi-active, 7, 287–288
(LVDT), 15	strut type, 7
manifold absolute pressure (MAP), 8, 10, 14,	suspension actuator, 16
37	suspension stroke, 81–82, 86, 290, 292, 294–296,
mass airflow (MAS), 15, 37	299
radar, 324	swappable. See plug-n-play
slip, 15	switching function, 249
throttle angle, 15, 126	system, 363
ultrasonic, 323–324	-,,
vehicle speed, 15	target hardware. See controller module
vision, 323, 351	Taylor series, 90, 214
settling time, 121, 215–216, 258, 378	testing and validation, 21, 28–31
shift map, 38	thermal capacitance, 140
shift quality, 131	thermal resistance, 140
side-slip angle, 55, 257–260, 262, 264, 266–267	throttle, 39–40, 126–128
single-input single-output (SISO), 9–10, 95, 107,	actuator, 16, 126–128
198–199	angle, 39–40, 42, 126–128
single-vehicle-road-departure (SVRD), 97–98,	control, 126–128
326–327, 350–352	motor, 126
site-specific information, 332–337	time delay. See delay
skyhook damper, 287–290	time to collision (TTC), 326
sliding surface, 267	time to lane crossing (TLC), 326–327, 350–352
slip, 57	tire axis system, 55–56
angle, 57, 267	tire deflection. See wheel hop
lateral, 57	tire-road friction coefficient, 57, 233–235, 250
longitudinal, 60, 237–239	
optimal, 234	toll debiting, 312, 315
slip ratio, 233–234	top dead center (TDC), 10, 13, 35–36, 124
Smith predictor, 120–122	torque converter, 7, 45, 63, 131–133, 150
Society of Automotive Engineers (SAE),	torque, load, 41, 45, 128
54–55	brake, 60
spacing, 337–345	engine, 41, 44–45, 128
spark command, 36	self-aligning, 56–57
spark ignition (SI), 16, 33–35, 39, 124, 129	Toyota Hybrid System (THS), 150–151, 177
spark timing, 13, 37–38, 124–125	traction control system (TCS). See control,
advanced, 36–37, 124–125	traction
retarded, 124–125	tractive force, 56, 62
speed ratio, 133–136	transfer function, 372–374
sprung mass acceleration, 85–86, 287–290	transmission control unit (TCU), 152–153
sprung mass, 81–82	transmission, automatic, 6, 131–132
stability derivatives, 73, 389	continuously variable (CVT), 6, 131–133, 151
stack current, 191–192, 196, 200–202	electronically controlled (ECT), 6, 131–133
stack voltage, 191, 193–199	manual, 6, 131
state equation, 45–46, 82, 107, 126, 225–230, 289, 353, 369–370	two-way catalytic converter (TWC), 9, 12, 37, 119
state estimation. See Kalman filter and observer,	two-wheel drive (2WD), 135–137
state	
state space, 369–370	ultra low emission vehicles (ULEV), 4
state variable, 370	uncertainty, 365-367, 122, 138-146

396 Index

understeer coefficient, 66 understeer, 65–67 unsprung mass, 81–82, 287 upshift, 133

v-diagram model, 24–25
vehicle coordinate system, 54–58,
385–386
vehicle dynamics control (VDC). See control,
vehicle stability
vehicle dynamics, lateral, 64–77
longitudinal, 58–64
vertical, 77–88
virtual desired trajectory (VDT), 356

wall-wetting, 48–49 waterfall model, 24 wet-friction clutch, 137 wheel hop, 81–82, 86, 291–292, 295, 299

x-by-wire, 16

yaw moment, 257–261, 264, 268 yaw rate following, 266–268 yaw-roll model, 261–264 yaw, 55, 386

zeros, 376–377 Ziegler-Nichols tuning rules, 377–379