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Preface

This book grew out of an attempt to understand the paper [Conn1], in

which Alain Connes constructs a beautiful noncommutative space with a

view to proving the Riemann hypothesis. That paper is supplemented by

Shai Haran’s papers [Har2,Har3], which give a similar construction with

more details on some of the computations. Connes’ proof is explored

in Chapter 6, where his method is applied with an aim of proving the

Riemann hypothesis for a curve over a finite field (Weil’s theorem).

Chapter 5 presents Bombieri’s proof [Bom1] of the Riemann hypoth-

esis for curves over a finite field. This chapter is not necessary for Chap-

ter 6, and can be skipped by a reader who is only interested in under-

standing Connes’ approach.

Chapters 1, 2, and 3 provide background. Chapter 1 is an exposition

of the theory of valued fields, and in Chapters 2 and 3, we present Tate’s

thesis [Ta] for curves over a finite field.

There are numerous exercises throughout the book where the reader

is asked to work out a detail or explore related material. The exercises

that are labelled as ‘problems’ ask questions that may not have a definite

answer.

This book is not primarily about number fields, but occasionally we

discuss the connection between number fields and function fields. We

have included several diagrams to help the reader create a mental picture

of this connection.

The author believes that Connes’ approach provides the first truly

convincing heuristic argument for the Riemann hypothesis. He also be-

lieves that working out this argument for the function field case is the

key to getting it to work for the integers. It is therefore not surprising

that we do not reach our goal in Chapter 6. This book provides the basis

for further research in this direction.

xi
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