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Introduction

The Riemann zeta function is the function ζ(s), defined for Re s > 1 by

ζ(s) = 1 +
1

2s
+

1

3s
+ · · · .

It has a meromorphic continuation to the complex plane, with a simple

pole at s = 1 with residue 1. Completing this function with the factor

for the archimedean valuation, ζR(s) = π−s/2Γ(s/2), one obtains the

function

ζZ(s) = ζR(s)ζ(s). (1)

The function ζZ is meromorphic on C with simple poles at 0 and 1,

and it satisfies the functional equation ζZ(1− s) = ζZ(s). This is proved

by Riemann [Ri1] using the “Riemann–Roch” formula1

θ(t−1) = tθ(t), (2)

where θ(t) =
∑∞

n=−∞ e−πn2t2 is closely related to the so-called theta-

function.2 For Re s > 1, the zeta function satisfies the Euler product

ζZ(s) = ζR(s)
∏

p

1

1− p−s
, (3)

where the product is taken over all prime numbers. It follows that the

zeros of ζZ all lie in the vertical strip 0 ≤ Re s ≤ 1.3 The Riemann

1 Formula (2) goes back to Cauchy and is called “Riemann–Roch Theorem” in
Tate’s thesis.

2 The classical theta function is defined as ϑ(z, τ) =
∑

∞

n=−∞
eπin2τ e2πinz . Its

relation to θ is θ(t) = ϑ(0, it2).
3 It is also known that the zeros do not lie on the boundary of this “critical

strip” [In, Theorem 19, p. 58] and [vF1, Theorem 2.4].
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2 Introduction

hypothesis states that these zeros all lie on the line Re s = 1/2:

Riemann hypothesis: ζZ(s) = 0 implies Re s = 1/2.

See [Ri1] and [Ed, Har2, Lap-vF1, Lap-vF2, Ta] for more information

about the Riemann and other zeta functions.

In this exposition, we prove the Riemann hypothesis for the zeta func-

tion of a nonsingular curve over a finite field. Let q be a power of a prime

number p, and let m(T,X) be a polynomial in two variables with coeffi-

cients in Fq, the finite field with q elements. The equation m(T,X) = 0

defines a curve C over Fq, which we assume to be nonsingular. Let NC(n)

be the number of solutions of the equation m(t, x) = 0 in the finite

set Fqn × Fqn . Thus NC(n) is the number of points on C with coordi-

nates in Fqn . A famous theorem of F. K. Schmidt in 1931 (see [fSch]

and [Has1,Has2,Tr]) says that there exist an integer g, the genus of C,
and algebraic numbers ω1, . . . , ω2g, such that4

NC(n) = qn −
2g
∑

ν=1

ωn
ν + 1.

We also define NC(0) = 2− 2g. From the formula for NC(n), the Mellin

transform (generating function)

MNC(s) =

∞
∑

n=0

NC(n)q
−ns

can be computed as a rational function of q−s,

MNC(s) =
1

1− q1−s
−

2g
∑

ν=1

1

1− ωνq−s
+

1

1− q−s
.

We define the zeta function of C by

ζC(s) = qs(g−1)

∏2g
ν=1(1− ωνq

−s)

(1− q1−s)(1− q−s)
,

so that MNC is recovered as its logarithmic derivative,

−ζ ′C(s)

ζC(s)
=

(

MNC(s) + g − 1
)

log q.

4 In NC(n), also the finitely many points “at infinity” need to be counted. See
Chapter 5.
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Introduction 3

The function ζC satisfies the functional equation ζC(1−s) = ζC(s). This

functional equation can be proved using the Riemann–Roch theorem

l(D) = degD + 1− g + l(K −D), (4)

which is the analogue of (2) above. This theorem is proved in Chapter 3.

Since the zeta function of C is a rational function of q−s, it is periodic

with period 2πi/ log q. It has two simple poles at s = 0 and 1, and 2g

zeros at s = logq ων , all repeated modulo 2πi/ log q. It satisfies an Euler

product, analogous to (3), which converges for Re s > 1,

ζC(s) = qs(g−1)
∏

v

1

1− q−s deg v
,

where the product is taken over all orbits of the Frobenius flow on C,
and deg v is the length of an orbit. It follows that 1 ≤ |ων | ≤ q. Artin

conjectured5 that ζC(s) has its zeros on the line Re s = 1/2. In terms of

the exponentials of the zeros, the numbers ων , this means that

|ων | =
√
q for every ν = 1, . . . , 2g.

This is the analogue of the Riemann hypothesis for ζC . It is trivially

verified for C = P1, when g = 0 and ζC does not have any zeros. It was

proved by H. Hasse in the case of elliptic curves (g = 1), and first in full

generality by A. Weil.6 Later proofs, based on one of Weil’s proofs, have

been given by P. Roquette [Roq] and others. Weil uses the intersection

of divisors with the graph of Frobenius in C × C, and his second proof

uses the action of Frobenius on the embedding of C into its Jacobian

(see [Ros, Appendix]). There have been some attempts to translate the

first and second proof to the Riemann zeta function, when C is the

“curve” specZ, but so far without success, one of the obstacles being

that in the category of schemes, specZ× specZ is one-dimensional and

not two-dimensional as the surface C × C (see [Har1]).

A completely new technique was discovered by Stepanov [Ste], initially

only for hyperelliptic curves. W. M. Schmidt [wSch] used his method to

reprove the Riemann hypothesis for ζC , and a simplified proof was given

by Bombieri [Bom1,Bom2]. Bombieri’s proof uses the graph of Frobenius

5 In his thesis [Art1], Artin considers only quadratic extensions of Fp(T ), that is,
hyperelliptic curves over Fp. Moreover, in his zeta functions, the Euler factors
corresponding to the points at infinity are missing. Later, F. K. Schmidt
introduced the zeta function of a general projective curve over an arbitrary finite
field [fSch].

6 Weil announced his ideas in 1940 [W1,W2] and explained them in 1942 in a
letter to Artin [W3]. But the complete proof (see [W5,W7]) had to await the
completion of his Foundations [W4]. See also [Ray].
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4 Introduction

in C × C.7 It relies on the Riemann–Roch formula and also on the action

of Frobenius. So his proof uses less geometry that cannot be translated

to specZ. We present this proof in Chapter 5.

Around the same time, P. Deligne proved the Weil conjectures [Del,

FreiK,K2]. His proof, applied in the one-dimensional case, gives yet an-

other proof of the Riemann hypothesis for curves over finite fields. This

proof relies on detailed information about the action of Frobenius on the

étale cohomology groups of the variety (see [K1, K3] for more informa-

tion). As with the other proofs, it is unclear how to translate this proof

to the number field case.

Recently, Alain Connes found a completely new method again, based

on the work of Shai Haran [Har1] (and then extended by Haran in the pa-

pers [Har2,Har3]), using harmonic analysis on the ring of adeles. Connes

establishes the positivity of the trace of a certain shift operator, thus

proving the Riemann hypothesis for specZ (and for all L-functions asso-

ciated with Grössencharacters), up to a “lemma” about a noncommuta-

tive space. In Chapter 6, we adapt Haran’s approach to obtain a proof of

the Riemann hypothesis for ζC . This proof does not use C × C or Frobe-

nius. Indeed, the only difficulty in translating it to a proof for specZ is

to provide a suitable local analysis at the real component of the adeles.

Connes does this by using special functions on [−c, c], the Fourier trans-

forms of which are also almost supported on [−c, c]. In our case, working

with the curve C, we have no archimedean valuations to deal with, and

the local analysis at the primes “at infinity” is not different from the

local analysis at the other points of C.
It is interesting to see the development in these proofs. Gradually,

more geometry that cannot be translated to the number field case has

been taken out. The question arises what exactly is needed to prove the

Riemann hypothesis for curves, and what can we learn from this for the

Riemann hypothesis for specZ.

Weil’s first proof uses the geometry of C × C, and, in particular, the

intersection of the graph of Frobenius with the diagonal. There is some

reason to believe that no analogue will ever exist for number fields, or,

at least, that constructing an analogue is harder than establishing the

Riemann hypothesis. His second proof uses the Jacobian of C, and, again,
no direct analogue may ever be constructed for the integers.

Deligne’s proof works for higher-dimensional varieties and uses very

detailed information about the geometry, along with sophisticated tools

7 Bombieri does not mention C × C, but he uses Fa
q (C)⊗ Fa

q (C), which is the ring of
functions on C × C.
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Introduction 5

to make deductions from this information. It is not impossible that an

adequate analogue of these cohomological theories exists for the integers

(see [Den1,Den2]).

Bombieri’s proof uses very little of the geometry of C×C, but it uses the
action of Frobenius and Riemann–Roch. Since Tate’s thesis, it is known

that the Riemann–Roch equality translates into formula (2). Bombieri’s

proof naturally divides into two steps. In the first step, he uses the action

of Frobenius to obtain a discrete flow on the curve, which is analyzed to

obtain an upper bound for the number of points on the curve, which is

a weak form of the prime number theorem for the curve (see Table 5.1

in Section 5.5). One sees that the horizontal coordinate of C × C plays

an “arithmetic” role, and the vertical coordinate plays a “geometric”

role (see Remark 5.4.7). In the second step, the Riemann hypothesis

for P1 is used, along with the fact that the Frobenius automorphism

generates the local Galois group (decomposition group) at a point on the

curve, to obtain a lower bound for the number of points on the curve.

Combining the two steps, one first obtains the analogue of the prime

number theorem with a good error term, and from this it is a small step

to deduce the Riemann hypothesis. Therefore, one might conclude that

the right approach to the Riemann hypothesis is to first prove the prime

number theorem with a good bound for the error.

Looking at the first step of Bombieri’s proof, one might even guess

that the key to a prime number theorem with a good error bound is to

construct a function (possibly a Fourier or Dirichlet polynomial, in the

spirit of the methods of Baker, Gelfond, and Schneider) that vanishes

at the first N primes to a high order. If one could bound the degree of

this polynomial, then one would obtain an upper bound for the number

of primes. This would already imply the Riemann hypothesis, so the

second step becomes unnecessary. According to Deninger [Den1,Den2],

the analogue of the Frobenius flow of the first step might be provided

by the shift on the real line.8

Connes, in turn, does not use the geometry of C × C or Frobenius.

Instead, he uses Fourier analysis on the ring of adeles and the diago-

nal embedding of the global field (the field of rational numbers). Even

though he does not use the Riemann–Roch theorem, this theorem is a

8 According to Bombieri, the correct philosophy is as follows: since Frobenius in
characteristic p is based on the fact that the binomial coefficients

(

p

k

)

are
divisible by p if k �= 0, p, an understanding of the archimedean Frobenius should

come from an understanding of the size of
(

n

k

)

. This leads to the Gaussian e−πx2

and probabilities [Bom2] (personal communication, October 2008).
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6 Introduction

natural consequence of the formalism that he sets up, much as in Tate’s

thesis. The only problem is that on the real line, the Fourier transform of

a compactly supported function is not compactly supported.9 To com-

plete the proof of the Riemann hypothesis for specZ, one might try to

construct a suitable substitute for this requirement.

The fact that Connes does not use the action of Frobenius should make

one suspicious about his approach. However, Connes uses the action of

the idele class group on the space of adele classes. As Connes points

out [Conn1, Remark c, p. 72], this action is the counterpart of the action

of Frobenius on the curve. Indeed, by class field theory, there exists an

isomorphism between the exact sequences

ker �� A∗/K∗
|·|

�� qZ

πab(C) �� Gab
�� 〈φ〉

(5)

The vertical isomorphisms come from class field theory. The upper

sequence gives the norm from the idele class group A∗/K∗ to the group

of powers of q. The kernel of this map corresponds to the group πab(C) of
abelian covers of the curve C inside the Galois group of abelian extensions

Gab = Gal(Fq(C)ab,Fq(C)).

On the level of Galois theory (the lower sequence in (5)), the second

arrow maps Gab onto the group generated by the Frobenius automor-

phism φ. This automorphism acts on constant field extensions of the

function field of C, which corresponds to the Frobenius flow on C.
The counterpart for Z is the diagram of exact sequences

A∗/Q∗R+ �� A∗/Q∗
|·|

�� R+

Gal(Qab,Q) �� ? �� ?

(6)

where the left vertical map is the isomorphism from class field theory be-

tween the group A∗/Q∗R+ and the Galois group of the maximal abelian

extension of Q. For the other vertical equalities, no counterpart is known

9 In the field of p-adic numbers, and in general in any nonarchimedean field, the
Fourier transform of a function that is locally constant is compactly supported.
This is not true for the archimedean fields R and C. See Section 3.1.
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Introduction 7

within Galois theory. Indeed, such a counterpart must lie outside of Ga-

lois theory, since any continuous map R+ → Gal(Qa/Q) is constant,

the latter group being profinite. Thus, only the “geometric part” of di-

agram (5), the abelian fundamental group πab(C), has its counterpart

in number theory, while the “arithmetic part,” corresponding to con-

stant field extensions, remains a mystery in number theory.10 However,

in [Conn2], Connes defines the noncommutative space A/Q∗ of the adeles

modulo the multiplicative action of the diagonally embedded rationals.

This space has a natural multiplicative action of the idele class group

by shift operators, thus completing the question marks in (6). In par-

ticular, the question mark under R+ corresponds to the multiplicative

action of R+ on A/Q∗ by shifts, which, by diagram (5), corresponds to

the action of Frobenius. It seems that everything is in place to prove the

Riemann hypothesis for specZ.

This seems to be the first time since the formulation of the Riemann

hypothesis in 1859 that we have a serious heuristic argument for its truth.

It is surprising that such an easily stated problem, either as “all nonreal

zeros of ζ(s) have real part 1/2” or as “the prime number theorem

has an error term of order x1/2+ε,” should be so hard to solve. Indeed,

this was not immediately appreciated at the time, since Barnes assigned

the Riemann hypothesis to Littlewood as a thesis problem (see [Conr]).

But from the solution of the Riemann hypothesis for curves over finite

fields, it seems that there may never be a proof using only methods from

analytic number theory.11

10 Every extension of Q (abelian or not) is ramified at some primes, hence should
be considered as a geometric cover of curves. On the other hand, every abelian
extension of Q is cyclotomic, hence could be considered as a constant field
extension. It seems that the first two Galois groups in (5) have collapsed into the
one group Gal(Qab,Q), and the group 〈φ〉 is missing.

11 For a possible approach using the theory of fractal strings, see [vF1, Remark 4.5].

www.cambridge.org/9781107685314
www.cambridge.org


Cambridge University Press
978-1-107-68531-4 — The Riemann Hypothesis for Function Fields
Machiel van Frankenhuijsen 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Valuations

Valuations correspond to orbits of points on a curve: every orbit of Frobe-

nius gives a valuation, and every valuation gives an orbit. This will be

elaborated in Chapter 5. In this chapter, we study how valuations dis-

tinguish constants from nonconstant functions and how valuations can

ramify.

We first develop this theory for an arbitrary extension L/K. In Sec-

tion 1.4, we apply our theory to the situation that is the subject of

this book, where L/K is a finite extension K/q of the field of rational

functions q = Fq(T ) over the finite field of constants Fq.

The embedding q →֒ K corresponds to the projection C ։ P1, where

a point on the curve C projects to the value of the function T at this

point. This will be explained in Chapter 5.

1.1 Trace and norm

Let L/K be a finite extension of fields. We can find a polynomial

m(X) = Xn +m1X
n−1 + · · ·+mn,

irreducible over K, such that L = K[X]/(m).

For x ∈ L, we consider the map Mx : L → L of multiplication by x,

Mx(y) = xy (x, y ∈ L).

This map is linear in y and consequently has a determinant and a trace,

defined independently of a choice of a basis for L as a K-vector space.

9
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10 Valuations

Definition 1.1.1 Let L/K be a finite separable extension, and x ∈ L.

The trace of x over K is the trace of Mx,

TrL/K(x) = Tr(Mx).

The norm of x over K is the determinant of Mx, NL/K(x) = det(Mx).

In particular, let x = X + (m) be the root of m in L. The matrix

of Mx on the basis (1, x, . . . , xn−1) of L over K is given by

Mx =

⎛

⎜

⎜

⎝

0 O −mn

1
. . .

...
. . . 0 −m2

O 1 −m1

⎞

⎟

⎟

⎠

.

The characteristic polynomial of this matrix is m(X). Assume that L/K

is separable, i.e., all roots of m are different. Then, over a splitting field

of m, the matrix Mx diagonalizes. Denoting by σ1x, . . . , σnx the images

of x in a splitting field F under the n embeddings σ1, . . . , σn of L into F ,

we find that this matrix diagonalizes as

Mx =

⎛

⎝

σ1x O
. . .

O σnx

⎞

⎠ (x = X + (m)), (1.1)

on a suitable basis for Fn.

Exercise 1.1.2 Show that det(λI −Mx) = m(λ).

Exercise 1.1.3 L is n-dimensional over K, and Fn is n-dimensional

over F . Show that K[X]/(m)⊗ F ∼= F [X]/(m) ∼= F ⊕ · · · ⊕ F .

Clearly, for any two elements x, y ∈ L, we have Mx+y = Mx +My and

Mxy = MxMy. Hence Mf(x) = f(Mx) for every polynomial f over K.

An element y ∈ L can be written as y = f(X) + (m) for a polynomial f

overK. Therefore,My = f(Mx) forMx as in (1.1), and the matrix ofMy

diagonalizes as

My =

⎛

⎝

f(σ1x) O
. . .

O f(σnx)

⎞

⎠ =

⎛

⎝

σ1y O
. . .

O σny

⎞

⎠ ,

since f(σix) = σif(x) = σiy. We deduce the following proposition and

corollary:
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1.1 Trace and norm 11

Proposition 1.1.4 Let L/K be a finite separable extension of fields,

and let Ka be an algebraic closure of K. Then

TrL/K(x) =
∑

σ:L→Ka

σx,

where the summation extends over all embeddings of L into Ka.

For a finite separable extension M of L, each embedding σ : L → Ka

extends to an embedding of M into Ka in [M : L] different ways. Thus

we obtain the following corollary:

Corollary 1.1.5 TrM/K = TrL/K ◦TrM/L in a tower M/L/K of finite

separable extensions.

This property of the trace will be needed in Chapter 3 to define the

additive character of a field.

Exercise 1.1.6 Formulate and prove the analogue of Proposition 1.1.4

and Corollary 1.1.5 for the norm.

1.1.1 The canonical pairing

We have a K-valued pairing between elements of L, given by

(x, y) �−→ TrL/K(xy).

Writing Tr for TrL/K , the matrix of this pairing on a basis (ǫ1, . . . , ǫn)

for L as a K-vector space is

Dǫ =

⎛

⎜

⎜

⎜

⎝

Tr(ǫ21) Tr(ǫ1ǫ2) . . . Tr(ǫ1ǫn)

Tr(ǫ2ǫ1) Tr(ǫ22) . . . Tr(ǫ2ǫn)
...

...
. . .

...

Tr(ǫnǫ1) Tr(ǫnǫ2) . . . Tr(ǫ2n)

⎞

⎟

⎟

⎟

⎠

.

The pairing of two elements x and y can be computed using Dǫ as

follows. Write x = x1ǫ1 + · · · + xnǫn and y = y1ǫ1 + · · · + ynǫn with

coefficients xi and yi in K. Then

TrL/K(xy) = (x1 . . . xn)Dǫ

⎛

⎜

⎝

y1
...

yn

⎞

⎟

⎠
.
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