INDEX

Abbottsford, New Zealand, landslide 1979,	back-burns, 244
180–2, 209	backing fires, 235
absolute drought, 36	ballistic projectiles, 90
accelerometers, 117	barriers, 213–14
aftershocks, 122–4	basaltic magmas, 89
agistment agreements, 45	base flow, 16
agriculture	basin lag time, 16
and droughts, 33, 37, 45, 47	Bassett, K., 134
and earthquakes, 132	Bastin, S., 134
and volcanoes, 74	Båth's law, 124
Alley, W. M., 40	bathymetry, 163, 166
Antarctic Plate, 108	Becker, J. S., 26
anticyclones, 38	Becker, M., 24
•	Beringer, J., 239
arson, 245–6	Bialla debris avalanche, Papua New
ash	-
clouds, 85, 90	Guinea, 198
volcanic, 74, 76, 90, 94	'Black Friday' bushfire 1939, 227
'Ash Wednesday' bushfires, 1983, 228,	'Black Saturday' bushfire 2009, 228–32, 241,
240, 242	242
asteroids, 153, 162	blind faults, 112
atmosphere, 39, 54	block-and-ash flows, 82
atolls, 157	blocking highs, 10, 46
Auckland Volcanic Field (AVF), 75-7, 83, 89	Blong, R., 198
hazards of, 91–3	boulders, 133
impact assessment, 94	Brisbane, 12
likelihood of eruption, 87	flood 2011, 12–14
monitoring, 95	British Geological Survey, 189, 198
Australasia	buildings
defined, 2–3	and bushfires, 230, 231, 240, 242, 245
earthquakes in, 106	and earthquakes, 105, 120, 131, 134
landslides in, 188–98	and landslides, 180
tropical cyclones in, 55, 60	regulations and codes, 105, 134, 245
tsunamis in, 151-61	and tropical cyclones, 63, 65, 67
volcanoes in, 77	Bureau of Meteorology, Australia, 40, 52, 55,
Australasian Fire Authorities Council, 239	58, 165
Australia	Burton, I., 3
bushfires in, 226-8	bushfire seasons, 232
droughts in, 39, 43	bushfires
earthquakes in, 106	case studies, 228–32
landslides in, 191	and droughts, 34, 44
Millennium Drought 2002-03, 33-4	fatalities, 240–1
tsunamis in, 151–3	and gender, 240, 241
volcanoes in, 80	hazard mitigation, 242–8
Australian Emergency Management	hazards, 226
Committee, 25	and humans, 229–31, 237–42
Australian Geomechanics Society, 214	ignition reduction, 245–6
Australian Plate, 108, 151, 153, 159	parts of, 235
Avon River, 132, 134	physical dimensions, 229, 232–6
11VOII MVCI, 1J2, 1JT	physical differisions, 227, 232-0

> risk reduction, 242-8 coseismic deformation, 120 significant, 227-8 coseismic slips, 108, 113, 120 and social dimension, 229-31, 237-42 Coulomb static stress transfer, 115 Council of Australian Governments cadastral-type surveys, 121 (COAG), 25 caldera collapse, 155, 159, 162 Craig, R. F., 202 calderas, 77 Crompton, R. P., 242 Callaghan, J., 63 Curtis islands, 85 Canterbury earthquake 2010-11, 128-35 CyclAUS model, 68 Canterbury earthquake sequence (CES), 128 cyclones See tropical cyclones (TCs) carbon dioxide (CO₂), 74, 80 case studies dams, 14, 21, 126 Abbotsford, New Zealand, landslide 1979, Dare, R. A., 55 180-2, 209 Darfield earthquake, 122, 128 Auckland Volcanic Field (AVF), 75-7 Darwin, Australia 'Black Saturday' bushfire 2009, 228-32 tropical cyclone Tracy, 65-6 Brisbane flood 2011, 12-14 Darwin, Charles, 157 Canterbury earthquake 2010-11, 128-35 Davidson, N. E., 55 coastal inundation, 23-4 Day, T. J., 26 flash floods, 27 debris avalanches, 91, 198 Lawrence Hargrave Drive landslide, 182-4, debris flows, 91, 182 Deep-ocean Assessment and Reporting Millennium Drought 2002-03, 33-4 of Tsunamis (DART® Buoy) New Zealand drought 2012-13, 46-7 system, 165 South Pacific tsunami (SPT) 2009, 148-9, 168 Deligne, N. I., 95 tropical cyclone Tracy, 65-6 Diamond, H. J., 61, 63 Tumbi, Papua New Guinea, landslide, 184, digital terrain models (DTMs), 26 210 dip-slope, 180 catchments, 15-16 disaster preparedness See emergency caves, 127 preparedness centroid, 112 distant tsunamis, 151 Cepeda, J., 210 Dovers, S., 44 Chile downstream floods, 11, 15-16 tsunamis, 160 drained analysis, 203 Christchurch, New Zealand, 20 drought indices, 40-2 cliff collapses, 133 Drought Monitor (DM), 42 climate, 232-3 droughts climate change, 248 case studies, 33-4 climate science, 16 categories, 36-8 climatological drought, 36-7 causes, 38-9 characteristics, 35-6 cloud seeding, 44 defined, 34-5, 36-8 coastlines and earthquakes, 126, 127 human responses, 44-5 inundation, 15, 23-5 impact mitigation, 45 and landslides, 189 impacts, 43-4, 47 communication of risk, 23, 247 and rainfall, 3, 8, 34, 35 compensation, 22 seasonal, 37 convergent plate boundary, 77 dry weather, 37 Cook Islands duration, 4 tropical cyclones, 53, 67, 68 and droughts, 35, 36, 39, 43 coral atolls, 25 and earthquakes, 117 Coriolis effect, 54 and floods, 10

earth banks, 20	extratropical cyclones, 10, 60
earthquake cycle, 113	Eyles, G., 198
earthquake-induced landsliding (EIL), 194-7	
earthquakes	factor of safety (FoS) for slopes, 202, 206
assessing, avoiding and mitigating, 127-8	failure stress, 113
behaviour models, 113-15	famine drought, 37
case studies, 128–35	farmers, 43, 239
characteristic, 113	fatalities, 105, 161, 188, 189, 240-1
fatalities, 105	fault ruptures, 108, 111, 126, 130-1
frequency-magnitude relationships,	hazards, 131–2
122–4	measuring, 120–2
hazards of, 125–8	fault slips, 108, 110, 113
impacts, 105	fault zones, 112
and landslides, 194–7	faulting-induced hazards, 125–6
measuring fault ruptures, 120-2	faults, 108–13
monitoring systems, 94	Ferguson, I. S., 242
origins of, 108–13	Fiji Meteorological Service, 58
predicting, 115	fire, 226, 232
risks, 106	behaviour, 232, 235–6
shaking intensity, 117–20	flanks, 235
triggering, 115–17	prescribed burning, 243–4
and tsunamis, 157	and vegetation, 233–5
volcanic, 91	See also bushfires
Eburn, M., 44	fire danger ratings (FDRs), 228,
economic impacts	236, 247
droughts, 33, 43, 47	fire fountains, 76
and tropical cyclones, 65	fire services, 239, 246–7
education	fire weather, 232–3
bushfires, 247	fireline intensity, 230
floods, 23	fissures, 126, 132
tsunamis, 168, 170	flank collapse, 155, 162
effusive eruptions, 88	flash floods, 11, 27
El Niño, 38, 46, 61	flood proofing, 20
El Niño-Southern Oscillation (ENSO), 38, 61	flood records, 17
elastic rebound, 113	floodplains, 8, 11, 20
elastic shear strain, 113	floods
Eldfell volcano, 93	abatement, 21
emergency preparedness	adjustments, 18, 19-23
and bushfires, 231, 239-40, 242, 247-8	avoidance, 19-20
and floods, 21	case studies, 12-14, 23-4
and tropical cyclones, 68	compensation, 22
and tsunamis, 168, 170	damage reduction, 18
emergency responses, 246-7	frequency assessment, 17
energy sector, 47	hazard event characteristics, 10
environmental impacts, 4, 44	hazard mitigation, 17-19
epicentre, 112	and humans, 11, 18, 19-23
Eriksen, C., 239	and land-use planning, 21, 26
Eurasian Plate, 151	and landslides, 10
eustatic sea level changes, 116	management, 17, 19
explosive eruptions, 88	management policies, 19
explosive magmatic eruptions, 88	measuring and monitoring, 15-16
exposure, 93	probabilities and frequencies, 16-17
defined, 87	protection, 20–1

and rainfall, 3, 8, 10	Greendale Fault, 130, 131, 133, 134
reducing impact, 8	greenhouse effects, 74
regulation, 21	ground classes, 197
risk assessment, 17, 25-7	ground motion
and tropical cyclones, 63	strong, 117, 119
types of, 10–11, 14–15	ground shaking, 149
types of damage, 8, 17–18	groundwater, 37, 133
warning systems, 18	Gutenberg-Richter relationship (G-R), 122-4
flow depth, 163	
fluid mobility, 116, 127	Hall, J. D., 61
forecasting	Hancox, G. T., 194
floods, 21	Handmer, J., 239
tropical cyclones, 69	Harper Hills landslide, 133
foreshocks, 113	Hastings, P. A., 61
Forest Fire Danger Index (FFDI), 228, 236, 241	Hawaiian eruptions, 83
forests, 234	Haynes, K., 240
fracking, 116	hazard awareness days, 170
Freer, J., 25	hazard event characteristics, 4
frequency, 4	hazard maps, 168, 210-13
and bushfires, 244, 248	hazard mitigation See mitigation
and droughts, 36	hazards
and earthquakes, 117, 119-20, 122-4, 128	and risks, 87, 93, 211
and floods, 10, 16–17	heading fires, 235
landslides, 192	Heathcote River, 132
and tropical cyclones, 62, 63	high pressures systems, 10, 54
and volcanoes, 83, 87	humans
freshwater, 24	and bushfires, 229-31, 237-42
frictional strength, 113	and droughts, 44-5
fuel (vegetation), 233–5	and floods, 11, 18, 19-23
management, 243–4	and landslides, 189
	hurricanes, 52
gas lines, 126	See also tropical cyclones (TCs)
gases	hydrograph curves, 15–16, 21
volcanic, 90	hydrological drought, 37–8
gender	hydrology, 116, 133
and bushfires, 240, 241	hypocentre, 112
geodetic studies, 130	
Geographic Information System software, 210	ice dams, 10, 15
geophysical surveys, 122	ice-jam floods, 15
Geoscience Australia (GA), 68, 165	Illawarra Escarpment, 182
geothermal resources, 74	impact, 4
Gill, A. M., 245	impact assessment, 93
Gill, N., 239	inactive faults, 110
Gisborne, New Zealand, 22	Indian Ocean Dipole (IOD), 13
glaciers, 116	Indian Ocean tsunami, 2004, 161, 163
Glade, T., 193	Indian Ocean Tsunami Warning and Mitigation
Glavovich, B. C., 26	System, 165
global warming, 61, 248	infinite slope equation, 200-4
government, 22, 24, 170, 244	causes of failure, 205–8
graben, 180	and stability, 204-5
grassfires, 236	inland floods, 63
Grassland Fire Danger Index (GFDI), 236	insurance cover, 22, 67, 68
grasslands 235	interferograms 120

interferometric satellite altimetry radar	lava domes, 89, 90, 91
(InSAR), 120	lava flows, 74, 90, 92, 94
interseismic period, 113	Lawrence Hargrave Drive landslide,
intraplate volcanoes, 77, 80, 83	182–4
irrigation, 24	levees, 15
isoseismals, 117	light detection and ranging (LiDAR)
	surveys, 26, 121
Joint Australian Tsunami Warning Centre	lightning strikes
(JATWC), 165–6, 168	volcanic, 85, 91
	liquefaction, 127, 132, 134
Kaeo, New Zealand, 22	lithosphere, 108
Kaharoa eruption, 82	loans, 45
Kaikohe-Bay of Islands Field, 83	local relative sea level (LRSL) change, 23-
Kapiti Coast District Council, 24	local tsunamis, 151, 153
Karoly D. J., 61	Love waves, 119
Kates, R., 3	lowland flooding, 14
Kempsey flood 2009, 15	
Kerang flood 2012, 15	maars, 76, 80
Krakatau eruption, 1883, 153, 156, 159	Macauley Island, 85
Kuleshov, Y., 62	Madden-Julian Oscillation (MJO), 61
Kuwae eruption, 159	mafic magmas, 89, 90
	magmas, 75, 77, 89, 90, 92
La Niña, 13, 38, 61	magnitude, 4
lahars, 83, 91	and droughts, 36
Lake, P. S., 33	and floods, 10
lake floods, 15	river flow, 17
Lake Purrumbete, 80	and volcanoes, 96
land subsidence, 11	See also Gutenberg-Richter relationship
land surface effects, 39	moment magnitude
landslide hazard maps, 210-13	management policies, 19
landslides, 63, 133	Mangaia, Cook Islands, 159
anatomy, 200	Mangatepopo Gorge, New Zealand, 27
case studies, 180-4, 209, 210	mass movements, 127, 133, 186
causes, 186, 191, 198, 200	Matthews, A. J., 61
classifying, 186	Maungataketake volcano, 92
described, 179, 186	McArthur Forest Fire Danger Index
and earthquakes, 127, 194-7	(FFDI), 228, 236
engineered solutions, 213-14	McKerchar, A., 26
fatalities, 105, 188, 189	Mein Smith, P., 2
and floods, 10	Melanesia volcanoes, 83–5
and humans, 189	Mercer, D., 239
management, 210-14	Meridian Energy, 47
mitigation, 210–14	meteorological drought, 36-7, 40
modelling, 198–209	Meteorological Service, New Zealand,
terminology, 186–8	36, 58
triggers, 200	mid-latitude cyclones (MLCs), 53
types of, 188	Mighty River Power, 47
velocity scale, 188	Ministry of Agriculture and Forestry, New
See also slopes	Zealand, 37
land-use planning, 21, 26, 44, 68, 213, 237-9,	Ministry for the Environment, New
244–5	Zealand, 24
lateral blasts, 91	Ministry for Primary Industries, New
lateral spreading, 127, 132	Zealand, 46

> mitigation, 5 Pacific Island countries and territories, 157-60 bushfires, 242-8 Pacific Plate, 77, 108, 151, 153, 159 drought impact, 45 Pacific Ring of Fire, 77, 151, 157, 160 earthquakes, 127-8 Pacific Tsunami Warning Center (PTWC), 165 flood hazards, 17-19 Palmer Drought Severity Index (PDSI), 40, 41 landslides, 210-14 Papua New Guinea tropical cyclones impact, 67-8 landslides in, 198 tsunami hazards, 168-71 volcanoes in, 83-5 volcanic hazards, 94-7 peak ground acceleration (PGA), 119 Modified Mercalli Intensity (MMI) scale, 117 peak ground displacements (PGDs), 119 moment magnitude (MW), 110 peak ground velocity (PGV), 119, 120 monsoons period, 120 summer, 38 periodic earthquake model, 113 Morrison, D. A., 244 phreatic eruptions, 88 phreatomagmatic eruptions, 88, 89, Motukorea volcano, 92 Mt Gambier, 80 90, 92, 162 Mt Lamington, Papua New Guinea, 83 plate tectonics, 108, 113 Mt Rouse, 80 Plinian eruption, 82 mudflows, 91, 180 population growth, 237-9 mudslides, 198 pore-water pressure, 203 Power, S. B., 63 names of tropical cyclones, 60 powerlines, 126, 245-6 Narasimhan, B., 40 preparedness See emergency preparedness National Emergency Risk Assessment prescribed burning, 243-4 Guidelines (NERAG), 25, 243 Probabilistic Tsunami Hazard Assessments National Institute of Water and (PTHA), 167 Atmospheric Research (NIWA), Probable Maximum Loss (PML), 167 New Zealand, 37, 46, 210 properties See buildings National Oceanic and Atmospheric public awareness, 23, 247 Administration (NOAA), US, 165 pumice rafts, 85 National Strategy for Disaster Resilience Puysegur Subduction Zone, 153, 154 (NSDR), 242 pyroclastic density currents, 74, 89-90, 94 native species, 47 pyroclastic flows, 155, 162 natural hazard events, 4, 5 natural hazards quarrying, 182 Queenstown, NZ flood 1999, 15 defined, 3 impact of, 3, 4 Quigley, M., 134 New Zealand drought 2012-13, 46-7 Rabaul, Papua New Guinea, 85 earthquakes in, 106 Rabaul Volcano Observatory, 85 extratropical cyclones, 61 rainfall flood risk management, 26-7 accumulation, 10 landslides in, 192-7 decile classification, 40 tsunamis in, 153-7 deficiencies, 40 volcanoes in, 81-3 and droughts, 3, 8, 34, 35 New Zealand Geological Survey, 180 and floods, 3, 8, 10 Newer Volcanics Province (NVP), 75, 77, 80 and tropical cyclones, 53 Ngauruhoe, 83 rainfall records, 42 rainstorms, 10, 193 ocean surface temperature, 54 Rangitoto, 75, 76, 83, 87 Okataina volcano, 82 Raoul Island, 85 Omori's law, 122-4 Rarotonga, 67 Oruanui eruption, 82 rate of onset See speed of onset overland flow, 10, 16 Rayleigh waves, 119

recession limb, 16	seismometers, 95
recurrence rate, 87	shaking-induced hazards, 125, 126–7, 132–4
Regina, Canada, 8	shear displacement, 108
regional floods, 14	shear strength, 203
Regional Specialized Meteorological Centres	shear stress, 108, 203
(RSMCs), 58	shoaling, 163
regional tsunamis, 151, 153	shrublands, 234
regulations, 21	silicic magmas, 81, 89, 90
relief aid, 22, 67	slip-predictable earthquakes, 113
relocation, 22	slip rates, 109
Renwick, J. A., 61	slopes
reservoirs, 14	angles, 208–9
resilience, 5	causes of failure, 205-8
droughts, 34	dry, 203, 204, 206
phases, 14	engineered solutions, 213-14
post floods, 14	factor of safety (FoS), 202, 206
tropical cyclones, 67	infinite slope equation, 200-4
resonant frequency, 120	and landslides, 195
return period, 17	and stability, 204–5
rhyolite eruptions, 82	stability analysis, 200–2
risk assessment, 5, 93	wet, 204, 205, 206
floods, 17, 25–7	Slovic, P., 23
of natural hazards, 68	Smart, G., 26
tropical cyclones, 68–9	snow melt, 10, 11
Risk Frontiers Natural Hazards Research	snowfall events, 8
Centre of Macquarie University, 68	social dimension
risks	and bushfires, 229–31, 237–42
and bushfires, 242–8	and droughts, 43
communicating, 23, 247	and floods, 26
and earthquakes, 106	and tropical cyclones, 65
and hazards, 87, 93, 211	and tsunamis, 166–8
and landslides, 210–13	and volcanoes, 93–4
and tsunamis, 166, 168–71	socioeconomic drought, 38
and volcanoes, 93, 94–7	soil moisture, 37, 40–1
RiskScape, 94	Soil Moisture Deficit Index (SMDI), 40, 41
rivers, 20, 21, 126, 127	Somerset Dam, 12
rock-bolting, 184	South Indian Ocean, 62
rock fractures, 108, 127	South Pacific, 62
rock types, 195	South Pacific Convergence Zone, 38
rockfalls, 133, 135, 182, 189	South Pacific tsunami (SPT) 2009, 148–9, 168
Rouse, H., 26	Southern Annular Mode (SAM), 13
Ruapehu, 75, 82	Southern Oscillation, 61
ruptures, 111–12, 120	South-West Pacific, 61, 85
See also fault ruptures	spatial extent, 4
	and droughts, 35, 43
Saffir–Simpson scale, 55, 57	and floods, 10, 11, 15
Samoa, 85	spectral acceleration, 120
satellite altimetry radar images, 120	spectral data, 42
satellites, 165	speed of onset, 4
saturation coefficient, 203	and droughts, 36
Saunders, W. S. A., 26	and floods, 10, 11
scoria, 75	spot fires, 236
sea-level rise, 23-4, 116	Srinivasan, R., 40

> static analysis, 202-4 Tropical Cyclone Risk Model (TCRM), 68 stationarity, 17 tropical cyclone Steve, 55 stopbanks, 20 tropical cyclone Tracy, 65-6, 68 storm surges, 52, 64 Tropical Cyclone Warning Centres stratovolcanoes, 75, 77, 83 (TCWCs), 58 stream flow, 16 tropical cyclones (TCs) stress, 108, 113 case studies, 65-6 drop, 113, 115 categories, 55 characteristics, 53-4 loading rate, 115 Strombolian eruptions, 83, 85 defined, 52-3 formation and decay, 54-5 subaerial landslides, 156, 162 future trends, 69 subduction zone, 77, 81, 154 submarine landslides, 153, 157, 158, 159, 186 impact mitigation, 67-8 impacts, 63-5 subsidies, 45 suicide rates, 43 intensity, 55 sulphur dioxide, 74 links with large-scale atmospheric surface displacements, 130-1 circulation, 61-3 Surtseyean explosions, 85, 92 monitoring and warnings, 58-61, 68 names, 60 Taranaki volcano, 75, 87 risk analysis, 68-9 Tarawera volcano, 82 tracks of, 60 Taupo Volcanic Zone (TVZ), 77, 81-3 trend analysis, 63 Taupo volcano, 82 See also extratropical cyclones Tavurvur, Papua New Guinea, 85 tropical storm Bola, 61 Te Maari, 83 tropical storms, 52 temperature, 54 tsunami hazard maps, 168 temporal spacing, 4 tsunami propagation models, 165 and droughts, 36 tsunamis and floods, 10 case studies, 148-9 tephra, 83 causes, 162 terrestrial landslides, 180, 186 defined, 148 tide gauges, 163 described, 163 tides, 116, 162 and earthquakes, 157 Timbal, B., 39 fatalities, 105, 161 time-predictable earthquakes, 114 hazard assessments, 167 Tonga-Kermadec subduction system, 77, 85 hazard mitigation, 168-71 Tonga-Kermadec Trench, 153, 154 hazards, 148, 166 Tongariro volcanic complex, 83 human and social dimensions, 166-8 Toowoomba flood 2011, 11 measuring and observing, 163-6 tornadoes, 52 physical dimensions, 162-6 Toronto, Canada, 8 risk reduction, 168-71 total normal stress, 203 sources, 161, 167 tourist industry, 170 South Pacific tsunami (SPT) 2009, 148-9, translational block slide, 180 168 types of, 151 triggers earthquakes, 115-17 volcanic, 91 landslides, 200 tuff rings, 76 trilateration surveys, 121 Tumbi, Papua New Guinea, landslide, tropical cyclone Bola, 10 184, 210 tropical cyclone George, 63 Tuvalu, 24 tropical cyclone Ingrid, 55 Tweed River, 11 tropical cyclone Larry, 68 typhoons, 52 tropical cyclone Oswald, 11 See also tropical cyclones (TCs)

> underwater landslides See submarine Waimakariri River, 20 landslides walls University of Canterbury, 47 retaining, 135 warning systems Varnes, D. J., 187 floods, 18, 21 vegetation tropical cyclones (TCs), 68 and drought indices, 42 tsunamis, 165, 168 and fires, 233-5 water management, 243-4 demand management, 45 Victorian Bushfires Royal Commission supply management, 34, 37, 45 (VBRC), 231, 244, 247-8 water policies, 34 watersheds, 8 Visitor Safety Education programs, 170 volcanoes waves case studies, 75-7 heights, 151, 153, 160, 163, 165 characteristics, 77 and landslides, 189 eruption styles, 83, 88-9 seismic, 115, 126, 162 tidal, 162 eruptions, 74 hazard mitigation, 94-7 and tsunamis, 163 hazardous phenomena, 89-93 White, F., 3 hazards, 75, 87 Whittaker, J., 239 impact assessment, 94 wildfires, 34, 44 impacts, 94 See also bushfires likelihood of eruption, 87-8 Wildland Urban Interface, 44 monitoring, 94-5 Willis, M., 246 physical dimensions of hazard, 87-9 Wills, Bruce, 47 and risks, 93, 94-7 Wilson, A. A. G., 242 social dimension, 93-4 wind Vulcan, Papua New Guinea, 85 speed, 52, 54 vulnerability, 5 and tropical cyclones, 54, 63 and droughts, 44 vertical shear, 54 and earthquakes, 105, 106 wine industry, 47 and floods, 19 Wivenhoe Dam, 12, 13, 14 and landslides, 197, 211 woodlands, 234 and tropical cyclones, 67, 68 World Meteorological Organisation (WMO), 58 and tsunamis, 167 and volcanoes, 93, 97 Z-Cards®, 170

266