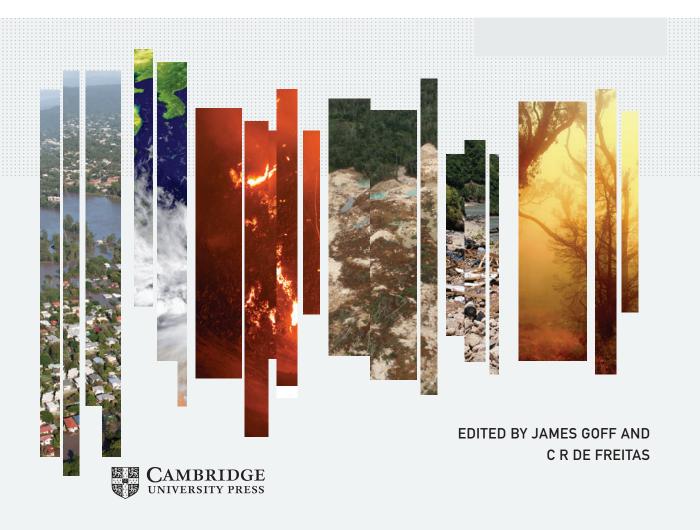


Natural Hazards in Australasia

Many ideas and concepts about natural hazards have been developed in Australasia, but these are often overlooked in books written from a Northern Hemisphere perspective. *Natural Hazards in Australasia* is the first textbook that considers Australasian natural hazards, their triggering mechanisms and the physical and social environments in which they occur.

James Goff and Chris de Freitas lead an expert author team from around Australia and New Zealand to introduce readers to the natural hazards of the Australasian region, including floods, drought, tropical cyclones, volcanic and seismic hazards, tsunamis, landslides and bushfires. This book explores the interactions not only between one hazard and another, but also between humans and natural hazards.


Key pedagogical features for students include learning objectives, regional case studies, summaries, chapter glossaries, end-of-chapter reviews and discussion questions, and further reading and resources. The full colour text is enhanced by a rich array of illustrations, photographs and maps.

James Goff is Professor in the School of Biological, Earth and Environmental Sciences at UNSW Australia.

C R de Freitas is Associate Professor in the School of Environment at the University of Auckland.

Natural Hazards in Australasia

CAMBRIDGE UNIVERSITY PRESS

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107682597

© Cambridge University Press 2016

This publication is copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Cover designed by Eggplant Communications Typeset by Integra Software Services Pvt Ltd Printed in Singapore by Markono Print Media Pte Ltd

A catalogue record for this publication is available from the British Library

A Cataloguing-in-Publication entry is available from the catalogue of the National Library of Australia at www.nla.gov.au

ISBN 978-1-107-68259-7 Paperback

Reproduction and communication for educational purposes

The Australian *Copyright Act 1968* (the Act) allows a maximum of one chapter or 10% of the pages of this work, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that the educational institution (or the body that administers it) has given a remuneration notice to Copyright Agency Limited (CAL) under the Act.

For details of the CAL licence for educational institutions contact:

Copyright Agency Limited Level 15, 233 Castlereagh Street Sydney NSW 2000

Telephone: (02) 9394 7600 Facsimile: (02) 9394 7601 E-mail: info@copyright.com.au

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

CONTENTS

Li	st of contributors	X
Li	st of figures and tables	xi
Li	st of case studies	XV
Ac	cknowledgements	xvi
1	Introduction	1
	James Goff and C R de Freitas	
	Introduction	2
	What is Australasia?	2
	What is a natural hazard?	3
	Conceptual overview	3
	Scope and plan of the book	5
	References	6
2	Floods	7
	C R de Freitas	
	Learning objectives	8
	Introduction and overview	8
	Hazard event characteristics	10
	Types of floods and their causes	10
	Measuring and monitoring floods	15
	Probabilities and frequencies	16
	Flood hazard mitigation and management	17
	Adjustments and human response	19
	Avoidance	19
	Protection	20
	Regulation	21
	Relocation	22
	Compensation	22
	Education	23
	Coastal inundation	23
	Hazard risk assessment and management	25
	Summary	27
	Glossary	28
	Review questions	29
	Discussion questions	29
	Further reading and other resources	29
	References	30
3	Drought	32
	C R de Freitas	
	Learning objectives	33
	Introduction and overview	34
	Characteristic dimensions of droughts	35

٧

	What is drought?	36
	Meteorological drought	36
	Agricultural drought	37
	Hydrological drought	37
	Socioeconomic drought	38
	Causes of drought	38
	Drought indices	40
	Impacts of drought	43
	Human response to the drought hazard	44
	Water supply management	45
	Water demand management	45
	Mitigation of drought impact	45
	Summary	48
	Glossary	48
	Review questions	48
	Discussion questions	49
	Further reading and other resources	49
	References	49
4	Tropical cyclones	51
7	C R de Freitas	31
	Learning objectives	52
	Introduction	52
	Characteristics of tropical cyclones	53
	Tropical cyclone formation and decay	54
	Tropical cyclone intensity	55
	Monitoring and warnings	58
	Trends and links with large-scale atmospheric circulation	61
	Impacts of tropical cyclones	63
	Impacts of dopical cyclones Impact mitigation	67
	Risk analysis and future trends	68
	Summary	69
	Glossary	69
	Review questions	70
	Discussion questions	70
	Further reading and other resources	70
	References	70
	References	/ 1
5	Volcanic hazards	73
	Jan Lindsay, Mary Anne Thompson and Philip Shane	
	Learning objectives	74
	Introduction	74
	Overview of volcanoes in Australasia	77
	Australia	80
	New Zealand	81
	Melanesia	83
	South-West Pacific	85
	Physical dimensions of volcanic hazard	87
	Likelihood of eruption	87
	Style of eruption	88

vi Contents

	Hazardous volcanic phenomena	89
	Hazards of the AVF	91
	Human and social dimensions of volcanic hazard	93
	Terminology of risk	93
	Volcanic impacts	94
	Impact assessment in the AVF	94
	Hazard mitigation and risk reduction for volcanic hazard	94
	Summary	97
	Glossary	98
	Review questions	100
	Discussion questions	101
	Further reading and other resources	101
	References	101
6	Seismic hazards	104
	M C Quigley and B Duffy	
	Learning objectives	105
	Introduction	105
	The origin of earthquakes	108
	Plate tectonics, stress and rock fracturing	108
	Earthquakes, faults, and plate tectonic settings	108
	Earthquake behaviour and triggering	113
	Models for describing earthquake behaviour	113
	Earthquake triggering	115
	Measurement and characterisation of earthquake shaking and faulting	117
	Earthquake shaking intensity	117
	Measuring fault ruptures	120 122
	Earthquake frequency-magnitude relationships Earthquake hazards	122
	Faulting-induced hazards	125
	Shaking-induced hazards	126
	Assessing, avoiding and mitigating earthquake hazards	127
	Summary	135
	Glossary	136
	Review questions	140
	Discussion questions	140
	Further reading and other resources	140
	References	143
7	Tsunamis	147
-	James Goff and Catherine Chagué-Goff	
	Learning objectives	148
	What is a tsunami?	148
	Introduction and overview	148
	Overview of tsunamis in Australasia	151
	Australia	151
	New Zealand	153
	Pacific Island countries and territories within Australasia	157
	Distant threats for Australasia	160

Contents vii

	Physical dimensions of tsunamis	162
	Causes	162
	What is a tsunami?	163
	Measuring and observing tsunamis	163
	Human and social dimensions of tsunamis	166
	Hazard mitigation and risk reduction for tsunamis	168
	Summary	172
	Glossary	172
	Review questions	174
	Discussion questions	174
	Further reading and other resources	174
	Websites	174
	Papers	175
	References	175
8	Landslides	178
	Samantha Clarke and Thomas Hubble	
	Learning objectives	179
	Introduction	179
	What is a landslide and why do they happen?	179
	Case studies	180
	An overview of landsliding	186
	Landslide terminology	186
	Overview of landslide occurrence in Australasia	188
	Australia	191
	New Zealand	192
	Papua New Guinea	198
	Understanding and modelling landslides	198
	Anatomy of a landslide	200
	Slope stability analysis and the infinite slope equation	200
	Infinite slope equation: static analysis	202
	Reconsideration of the case studies	209
	Management and mitigation strategies	210
	Risk avoidance and hazard mapping	210
	Engineered solutions and barriers	213
	Summary	216
	Glossary	216
	Review questions	218
	Discussion questions	219
	Further reading and other resources References	219 219
9	Bushfires	225
	Joshua Whittaker and Katharine Haynes	
	Learning objectives	226
	Introduction	226
	Overview of bushfire in Australia	226
	Significant bushfire events	227

viii Contents

Physical dimensions of bushfire	232
Climate and fire weather	232
Vegetation and fuel	233
Fire behaviour	235
Human and social dimensions of bushfire	237
Human locations and land uses	237
Planning, preparation and response	239
Gender and bushfire	240
Life and property losses	240
Hazard mitigation and risk reduction	242
Fuel management	243
Land-use planning	244
Building regulations and codes	245
Reducing bushfire ignitions	245
Fire and emergency response	246
Prepared, responsive communities	247
Future challenges	248
Conclusion	248
Summary	248
Glossary	250
Review questions	251
Discussion questions	251
Further reading and other resources	252
References	252
Index	258

Contents ix

CONTRIBUTORS

Catherine Chagué-Goff is Senior Lecturer in the School of Biological, Earth and Environmental Science at UNSW Australia.

Samantha Clarke is Assistant Lecturer in Geology and Engineering Geology in the Geocoastal Research Group at the University of Sydney.

C R de Freitas is Associate Professor in the School of Environment at the University of Auckland.

Brendan Duffy is Lecturer in Applied Geoscience in the School of Earth Sciences at the University of Melbourne.

James Goff is Professor in the School of Biological, Earth and Environmental Sciences at UNSW Australia.

Katharine Haynes is a Senior Research Fellow at Risk Frontiers, Macquarie University.

Thomas Hubble is Associate Professor in Geology and Engineering Geology at the University of Sydney.

Jan Lindsay is Associate Professor in the School of Environment at the University of Auckland.

Mark Quigley is Associate Professor of Active Tectonics and Geomorphology in the School of Earth Sciences at the University of Melbourne.

Philip Shane is Associate Professor in the School of Environment at the University of Auckland.

Mary Anne Thompson is Research Fellow in the School of Environment at the University of Auckland.

Joshua Whittaker is a Research Fellow at the Centre for Risk & Community Safety at the Royal Melbourne Institute of Technology.

FIGURES AND TABLES

Hazard and resource thresholds in relation to rainfall

Figures

2.2	Aerial view of Milton during Brisbane River flood, January 2011	12
2.3	Brisbane flood 2011	13
2.4	Hydrograph curve produced by continuously measuring	
	run-off from a catchment	16
2.5	Multi-strategy flood management	20
2.6	Flooded house – elevated	26
3.1	Land surface effects intensify drought during summer by positive	
	land-atmosphere feedback	39
3.2	North and South island of New Zealand Soil Moisture Deficit	
	Index anomalies relative to the normal, 1992-2013	46
3.3	Drought conditions during 2013 in the Wairarapa, New Zealand	47
4.1	Tropical cyclones and tornadoes compared	52
4.2	Schematic illustration of the structure of a tropical cyclone	
	in the Southern Hemisphere	53
4.3	Tracks of TC Steve in 2000	56
4.4	Tracks of TC Ingrid in 2005	56
4.5	Coverage areas of Tropical Cyclone Warning Centres	
	in the Australasian region	59
4.6	Tracks of all tropical cyclones for the period 1981-2005	60
4.7	A comparison of tropical cyclone tracks in the South-West	
	Pacific region during La Niña and during El Niño conditions	62
4.8	Impacts of tropical cyclones resulting from rain, wind	
	and storm surge	64
4.9	Illustration of a storm surge during the coastal impact	
	of a tropical cyclone	64
4.10	The track of TC Tracy 21–25 December 1974	66
4.11	Wreckage left by TC Tracy	67
5.1	Map showing Auckland urban areas and past eruption vents	
	and volcanic deposits of the Auckland Volcanic Field	75
5.2	Map showing the location of Australasia in relation to major	
	plate tectonic boundaries and the Pacific Ring of Fire	76
5.3	Map of Australasian volcanic areas and subduction zone trenches	78
5.4	Different shapes and sizes of volcanic landforms	79
5.5	Map of intraplate Newer Volcanics Province in south-eastern Australia	80
5.6	Map showing active volcanic regions of New Zealand's North Island	81
5.7	Images of different volcano types and eruption styles	84

5.8	Images illustrating the volcanic impacts of eruptions	86
5.9	A transdisciplinary, holistic approach to mitigating volcanic activity	96
6.1	(a) The plate tectonic setting of Australasia; (b) Cross-sectional cartoon	
	through the Australian plate; (c) Cross-sectional cartoon through the	
	Australian-Pacific Plate boundary in New Zealand's North Island;	
	(d) Cross-sectional cartoon through the Australian-Pacific continent-	
	continental collisional plate boundary in New Zealand's South Island	109
6.2	Types of faults	110
6.3	(a) The subsurface anatomy of an earthquake rupture;	
	(b) Cross-sectional depth profile of a fault zone and related	
	changes in seismic shear wave velocities	111
6.4	Scaling relationships between earthquake moment magnitude	
	and frequency in Australasia	112
6.5	(a) The seismic cycle and elastic rebound; (b) Plot of fault stress versus	
	time through the seismic cycle; (c) Elastic strain versus time through	
	the seismic cycle; (d) Fault total displacement versus time through the	
	seismic cycle; (e) Stress evolution	114
6.6	The many ways in which earthquakes may be triggered	116
6.7	Methods for measuring earthquake ruptures and studying active faults	121
6.8	(a) Gutenberg–Richter plot for frequency–magnitude relationships	
	in the Canterbury region; (b) Temporal distribution of earthquakes	
	during the Canterbury earthquake	123
6.9	(a) Epicentral locations of $M_w \ge 5$ earthquakes in Australasia since	
	1905; (b) Gutenberg–Richter plot summarising $M_w \ge 5$ seismicity	
	for the regions delineated in (a) for the period 1905–2014	124
6.10	Earthquake faulting and shaking hazards in a geologically	
	heterogeneous landscape	125
6.11	The geological and seismologic context for the 2010-11	
	Canterbury earthquake sequence	129
6.12	Recording of the Darfield earthquake surface rupture	130
7.1	Tsunami propagation map showing approximate extent of	
	the 2009 South Pacific tsunami	149
7.2	The 2009 South Pacific tsunami in Samoa	150
7.3	Australasia and its tectonic setting	152
7.4	A series of maps summarising the Australian tsunami record	154
7.5	New Zealand showing main local, regional and distant tsunami sources	155
7.6	Detail of South-West Pacific region highlighting similarly	
	aged Australasian events	156
7.7	Plan geomorphology of Pacific atolls	158
7.8	Summary of wave height data for the 1868 and 1960 distant	
	source Chilean tsunamis	161
7.9	Key terms associated with the life cycle of a tsunami from	
	generation to inundation limit	164
7.10	Simplified risk management process	166

7.11	Example of tsunami inundation and evacuation route map	
	from Waihau Bay, Bay of Plenty, North Island, New Zealand	169
7.12	Generic New Zealand tsunami evacuation sign	169
7.13	Hawaii Island's Z-Card	171
8.1	(a) Geological map of the Abbotsford landslide; (b) Geological	
	cross-section of the Abbotsford landslide; (c) Oblique aerial view	
	of the Abbotsford landslide	181
8.2	(a) An example of the problems faced along Lawrence Hargrave	
	Drive; (b) The Sea Cliff Bridge	183
8.3	(a) Location map of Tumbi Quarry landslide; (b) Site geology of	
	the Tumbi Quarry; (c) Aftermath of the landslide at Tumbi Quarry	185
8.4	Types of landslides	187
8.5	(a) Landslides occurring along the cliff escarpments of Whakatane	
	coast, New Zealand; (b) Rotational landslide on the coast of the	
	North Island of New Zealand	190
8.6	Fatal landslides in the Australasian region 2004–10	190
8.7	(a) Australasian mean rainfall map; (b) Australasian earthquake	
	distribution and Australian landslide distribution map; (c) Australasian	
	digital elevation map	191
8.8	Map of Australia showing (a) mean rainfall; (b) earthquake	
	distribution; (c) landslide distribution; and (d) digital elevation	
	model showing distribution of steep hillslopes	192
8.9	Map of New Zealand showing (a) mean rainfall; (b) earthquake	
	distribution; (c) distribution of large, multiple-occurrence,	
	rainfall-triggered, regional landslide events 1974-2004; (d) digital	
	elevation model showing the distribution of steep hillslopes	193
8.10	Glade's map dividing New Zealand into regions of landslide	
	susceptibility	194
8.11	EIL opportunity in New Zealand	196
8.12	Map of PNG showing (a) digital elevation model showing	
	distribution of steep hillslopes; (b) earthquake distribution;	
	(c) landslide distribution; (d) mean rainfall	199
8.13	The 1985 Bialla debris avalanche in Papua New Guinea	200
8.14	Anatomy of a soil slump/landslide with major features labelled	201
8.15	Force stress vectors within a slope	201
8.16	Forces involved in infinite slope model	203
8.17	Simple hillslope stability investigations using the infinite	
	slope equation	206
8.18	(a) The process of cutting the toe of a slope; (b) Example	
	of a hillslope with toe cut away	208
8.19	Schematic approach to landslide hazard and risk evaluation	211
8.20	(a) Hazard due to precipitation-induced landslides in Indonesia;	
	(b) exposure to earthquake-induced landslides in Indonesia	212

Figures and tables XIII

8.21	(a) Abseilers installing rock-bolts and wire mesh to prevent rock blocks	
	falling; (b) Meshed rock wall and safety fence; (c) and (d) Abseilers	
	installing soil nails and wire mesh to control slope failure	214
8.22	The Australian Geomechanics Society's dos and don'ts of hillslope	
	construction	215
9.1	Areas of Victoria affected by bushfires during January and	
	February 2009	229
9.2	A house destroyed in the 2009 'Black Saturday' bushfires	230
9.3	Australian bushfire seasons	233
9.4	Parts of a bushfire	236
9.5	Fire danger ratings	237
9.6	Population growth and residential development are increasing	
	the exposure of people and assets in bushfire risk areas	238
9.7	Prescribed burning is undertaken to reduce fuel load	243
Table	S	
2.1	Structural and non-structural methods for flood damage reduction	18
3.1	Rainfall decile classification	40
3.2	Drought indices and their data needs	41
3.3	The Drought Monitor classification ranking percentile scheme	42
4.1	Tropical cyclone categories and corresponding values of approximate	
	average maximum wind speeds and central pressures, modified for	
	the Australian region from the Saffir–Simpson scale	57
4.2	The Saffir–Simpson tropical cyclone wind scale with types of	,
	damage due to wind as used by the US National Hurricane	
	Center Service (NOAA)	57
4.3	Tropical Cyclone Warning Centres (TCWCs) with regional responsibility	21
1.0	throughout Australasia	58
5.1	Typical characteristics of basalt, andesite, dacite and rhyolite magmas	79
6.1	Notable earthquakes in Australia and New Zealand, by date	106
6.2	Modified Mercalli Intensity (MMI) scale and comparison with	100
·-	peak ground acceleration	118
8.1	Summary of Varnes's 1978 classification of landslide types	188
8.2	Landslide velocity scale	188
8.3	Natural slopes and rock types affected by earthquake-induced	100
0.5	landslides	195
8.4	Typical slope threshold levels from the main types of	1//
0.4	earthquake-induced landslides	195
8.5	A range of ground classes of varying landslide vulnerability	197
8.6		19/
0.0	Typical values of unit weight, cohesion and friction angle for a range of slope materials	207
9.1	A selection of significant Australian bushfire events	207
	Australian fire danger ratings	
9.2	Australian me danger ratings	237

xiv Figures and tables

CASE STUDIES

2.1	The 2011 Brisbane flood	12
2.2	Coastal flooding and sea-level rise	23
2.3	The making of a tragic flash flood	27
3.1	The Millennium Drought	33
3.2	Dust bowled: the 2012-13 New Zealand drought	46
4.1	Tropical cyclone Tracy (1974)	65
5.1	The Auckland Volcanic Field	75
6.1	The 2010-11 Canterbury earthquake sequence in New Zealand's	
	South Island	128
7.1	Samoa 2009	148
8.1	Abbotsford, New Zealand (1979)	180
8.2	Rockfalls and earth flows at Lawrence Hargrave Drive, Australia	182
8.3	Complex, multi-factor deep-seated landslide at Tumbi, Papua	
	New Guinea	184
9.1	The 2009 'Black Saturday' bushfires	228

ACKNOWLEDGEMENTS

The authors and Cambridge University Press would like to thank the following for permission to reproduce material in this book.

Text extracts

Extract from *Concise Australian National Dictionary*: Reproduced by permission of Oxford University Press Australia from *Concise Australian National Dictionary*, Joan Hughes, 1992 © Oxford University Press, www.oup.com.au; Extract from *The New Zealand Oxford Dictionary*: Reproduced by permission of Oxford University Press Australia from *The New Zealand Oxford Dictionary*, Tony Deverson 2004 © Oxford University Press, www.oup.com.au.

Images

Figure 2.2, 2.3: © Shutterstock.com/Brisbane; 2.6: © Shutterstock.com/nevenm; 3.2: © Reserve Bank of New Zealand; 3.3: Photo courtesy of NIWA - National Institute of Water and Atmospheric Research (Taihoro Nukurangi); 4.6: Created using User:jdorje/ Tracks by Nilfanion on 2006-08-05. Background image from File: Whole_world_-_land_ and_oceans.jpg (NASA). Tracking data for storms within the Atlantic and Eastern Pacific basins is taken from the National Hurricane Center and the Central Pacific Hurricane Center's Northeast and North Central Pacific hurricane database. The tracking data for storms within the Indian Ocean, the Northwest Pacific and the Southern Pacific is from the Joint Typhoon Warning Center. Tracking data for Cyclone Catarina in the South Atlantic was published in Gary Padgett's April 2004 Monthly Tropical Cyclone Summary and was originally produced by Roger Edson of the University of Guam; 4.9: © The State of Queensland 2015; 4.11: Billibeee/Wikimedia Commons; 5.7a, b, e: O Lloyd Homer GNS Science; 5.7c: O Steven Sherburn GNS Science; 5.7d: Photo: Sonja Storm; 5.8a: © Brad Scott GNS Science; 5.8b: Photo: Carol Stewart; 5.8c-f: Photos by Jan Lindsay; 6.8: GeoNet content is copyright GNS Science and is licensed under a Creative Commons Attribution 3.0 New Zealand License; 7.2: Photo: Catherine Chagué-Goff; 7.7a: Satellite image courtesy of NASA (Visible Earth: http:// visibleearth.nasa.gov/); 7.7b: Satellite image courtesy of NASA-Johnson Space Center, Image Science and Analysis Laboratory (http://eol.jsc.nasa.gov/); 7.11: Reproduced with permission of Bay of Plenty Emergency Management Group (BOP CDEMG) -(http://bopcivildefence.govt.nz/media/CDBOP/MemberLibrary/Waihau%20Bay%20 Tsunami%20Evacuation%20Route%20Map.gif, 2014); 7.13: Courtesy Hawaii Tourism Authority; 8.2a: Photo: Hendrickx et al. 2011. Reproduced with permission from Australian Geomechanics Society; 8.2b: Wikimedia Commons/Illawarrashowcase; 8.4, 8.14: U.S. Geological Survey Department of the Interior/USGS; 8.5a: Image courtesy of tumekeFM 2013; 8.5b: Image courtesy of Mike Marden of New Zealand Landcare Research, Manaaki Whenua; 8.7a: Asia-Pacific: Annual Precipitation (Jul 2015). UN Cartographic Section, WORLDCLIM (Indicator BIO12 of the BIO Coverage), United Nations Office for the Coordination of Humanitarian Affairs (OCHA) Regional Office for Asia Pacific (ROAP). Reprinted with the permission of the United Nations; 8.8a:

xvi

Bureau of Meteorology (2015). 'Average rainfall – annual'. Retrieved 22 May 2015, from http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp; **8.9a, b**: National Institute of Water and Atmospheric Research 2015; **8.13**: King, J. et al. (1989). 'The 1985 Bairaman landslide dam and resulting debris flow, Papua New Guinea'. *Quarterly Journal of Engineering Geology and Hydrogeology* 22(4): 257–270. http://qiegh.geoscienceworld.org/feedback; **8.18b**: Image courtesy of Thomas Hubble, 2011; **8.19, 8.20**: From 'Risk Assessment and Mitigation Measures for Natural and Conflict Related Hazards in Asia-Pacific', by Cepeda et al, © 2010 United Nations. Reprinted with the permission of the United Nations; **8.22a, b**: Images courtesy DJ Matheson of Abseil Access Engineering New Zealand; **8.22c, d**: Images courtesy of Abseil Access Engineering New Zealand; **9.2, 9.5, 9.6, 9.7**: Image courtesy of Bushfire & Natural Hazards Cooperative Research Centre

Page 1: © Shutterstock.com/VanderWolf Images; **32**: © Shutterstock.com/Alberto Loyo; **51**: © Shutterstock.com/Harvepino; **73**: © Shutterstock.com/Fredy Thuerig; **104**: © Shutterstock.com/NigelSpiers; **147**: FEMA/Casey Deshong; **178**: AusAID/Department of Foreign Affairs and Trade; **225**: © Shutterstock.com/kwest.

Every effort has been made to trace and acknowledge copyright. The publisher apologises for any accidental infringement and welcomes information that would redress this situation.