

CambridgeMATHS

NSW SYLLABUS FOR THE AUSTRALIAN CURRICULUM

CAMBRIDGE UNIVERSITY PRESS

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Cambridge University Press is part of the University of Cambridge.
It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.
www.cambridge.edu.au
Information on this title: www.cambridge.org/9781107676701
© Stuart Palmer, David Greenwood, Jenny Goodman, Jennifer Vaughan, Sara Woolley 2014
This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014
Cover designed by Sardine Design
Typeset by Aptara Corp.
Printed in Singapore by C.O.S Printers Pte Ltd
A Cataloguing-in-Publication entry is available from the catalogue of the National Library of Australia at www.nla.gov.au

ISBN 978-1-107-67670-1 Paperback
Additional resources for this publication at www.cambridge.edu.au/GO

Reproduction and communication for educational purposes

The Australian Copyright Act 1968 (the Act) allows a maximum of
one chapter or 10% of the pages of this publication, whichever is the greater, to be reproduced and/or communicated by any educational institution for its educational purposes provided that the educational institution (or the body that administers it) has given a remuneration notice to Copyright Agency Limited (CAL) under the Act.

For details of the CAL licence for educational institutions contact:
Copyright Agency Limited
Level 15, 233 Castlereagh Street
Sydney NSW 2000
Telephone: (02) 93947600
Facsimile: (02) 93947601
Email: info@copyright.com.au

Reproduction and communication for other purposes

Except as permitted under the Act (for example a fair dealing for the purposes of study, research, criticism or review) no part of this publication may be reproduced, stored in a retrieval system, communicated or transmitted in any form or by any means without prior written permission. All inquiries should be made to the publisher at the address above.
Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

CAMBRIDGE

Cambridge University Press
978-1-107-67670-1 - CambridgeMaths: NSW Syllabus for the Australian Curriculum: Year 10: Stage 5.1/5.2/5.3
Stuart Palmer, David Greenwood, Sara Woolley, Jenny Goodman and Jennifer Vaughan
Frontmatter
More information

Table of Contents

Strands, substrands and outcomes

About the authors	ix
Introduction and guide to this book	x
Acknowledgements	xiv

Measurement 2

1B
Accuracy of measuring instruments
10
Pythagoras' theorem in three-dimensional problems14

1D Area of triangles, quadrilaterals, circles and sectors REvIIION21

1E
29

1F
1G Surface area of pyramids and cones 35 Volume of prisms and cylinders 40

1H
Volume of pyramids and cones
4651
Investigation 57
Challenges 60
Review: Chapter summary 61
Multiple-choice questions 62
Short-answer questions 63
Extended-response questions 66

Cambridge University Press
978-1-107-67670-1 - CambridgeMaths: NSW Syllabus for the Australian Curriculum: Year 10: Stage 5.1/5.2/5.3
Stuart Palmer, David Greenwood, Sara Woolley, Jenny Goodman and Jennifer Vaughan
Frontmatter
More information

Indices and surds		68	Number and Algebra
	Pre-test	70	Indices (S5.1, S5.2)
2A	Rational numbers and irrational numbers	71	Surds and Indices (S5.3§)
2B	Adding and subtracting surds	78	MA5.1-5NA, MA5.2-7NA
2C	Multiplying and dividing surds	82	MA5.3-6NA
2D	Binomial products	87	
2E	Rationalising the denominator	91	
2 F	Review of index laws revision	95	
2G	Negative indices revision	100	
2H	Scientific notation revision	105	
2I	Fractional indices	109	
2J	Exponential equations	114	
2K	Exponential growth and decay fringe	118	
	Investigation	124	
	Challenges	126	
	Review: Chapter summary	127	
	Multiple-choice questions	128	
	Short-answer questions	129	
	Extended-response questions	131	

Probability		132	Statistics and Probability
	Pre-test	134	Probability (S5.1, S5.2)
3A	Review of probability ReVIIION	135	MA5.1-13SP, MA5.2-17SP
3B	Formal notation for Venn diagrams and two-way tables Extension	142	
3C	Mutually exclusive events and non-mutually exclusive events Extension	151	
3D	Formal notation for conditional probability EXTENSION	156	
3E	Using arrays for two-step experiments	162	
3F	Using tree diagrams	168	
3G	Dependent events and independent events	177	
	Investigation	182	
	Challenges	184	
	Review: Chapter summary	185	
	Multiple-choice questions	186	
	Short-answer questions	187	
	Extended-response questions	189	

Cambridge University Press
978-1-107-67670-1 - CambridgeMaths: NSW Syllabus for the Australian Curriculum: Year 10: Stage 5.1/5.2/5.3
Stuart Palmer, David Greenwood, Sara Woolley, Jenny Goodman and Jennifer Vaughan
Frontmatter
More information

Cambridge University Press
978-1-107-67670-1 - CambridgeMaths: NSW Syllabus for the Australian Curriculum: Year 10: Stage 5.1/5.2/5.3
Stuart Palmer, David Greenwood, Sara Woolley, Jenny Goodman and Jennifer Vaughan
Frontmatter
More information

Geometrical figures and circle geometry		346	Measurement and Geometry
	Pre-test	348	Properties of Geometrical Figures
6A	Review of geometry REvISION	349	(S5.1, S5.2, S5.3\$)
6B	Congruent triangles revision	360	Circle Geometry (S5.3\#)
6C	Using congruence to investigate quadrilaterals	367	MA5.1-11MG, MA5.2-14MG,
6D	Similar figures	371	MA5.3-16MG, MA5.3-17MG
6E	Proving and applying similar triangles	377	
6F	Circle terminology and chord properties	384	
6G	Angle properties of circles	391	
6H	Further angle properties of circles	398	
6I	Theorems involving tangents	403	
6J	Intersecting chords, secants and tangents	409	
	Investigation	413	
	Challenges	415	
	Review: Chapter summary	416	
	Multiple-choice questions	417	
	Short-answer questions	418	
	Extended-response questions	421	

Trigonometry		422	Measurement and Geometry
	Pre-test	424	Right-angled triangles
7A	Trigonometric ratios	425	(trigonometry) (S5.1, 5.20)
7B	Finding unknown angles	432	Trigonometry and Pythagoras'
7C	Applications in two dimensions	437	Theorem (S5.1, S5.2, S5.3\$)
7D	Directions and bearings	442	MA5.1-10MG, MA5.2-13MG,
7E	Applications in three dimensions	449	MA5.3-15MG
7F	Obtuse angles and exact values	455	
7G	The sine rule	461	
7H	The cosine rule	467	
7 I	Area of a triangle	471	
7J	The four quadrants	475	
7K	Graphs of trigonometric functions	482	
	Investigation	490	
	Challenges	492	
	Review: Chapter summary	493	
	Multiple-choice questions	494	
	Short-answer questions	495	
	Extended-response questions	498	

Cambridge University Press
978-1-107-67670-1 - CambridgeMaths: NSW Syllabus for the Australian Curriculum: Year 10: Stage 5.1/5.2/5.3
Stuart Palmer, David Greenwood, Sara Woolley, Jenny Goodman and Jennifer Vaughan
Frontmatter
More information

Quadratic expressions and quadratic equations		500	Number and Algebra
	Pre-test	502	Algebraic Techniques (55.2, 55.38)
8A	Expanding expressions revision	503	Equations (55.2, 55.38)
8B	Factorising expressions	508	MA5.2-6NA, MA5.3-5NA,
8C	Factorising monic quadratic trinomials	512	MA5.2-8NA, MA5.3-7NA
8D	Factorising non-monic quadratic trinomials	517	
8E	Factorising by completing the square	521	
8 F	Solving quadratic equations by factorising	526	
8G	Using quadratic equations to solve problems	531	
8H	Solving quadratic equations by completing the square	535	
8 I	Solving quadratic equations with the quadratic formula	539	
	Investigation	544	
	Challenges	546	
	Review: Chapter summary	547	
	Multiple-choice questions	548	
	Short-answer questions	549	
	Extended-response questions	550	

Non-linear relationships, functions and their graphs		
	Pre-test	552
9A	Exploring parabolas	555
9B	Sketching parabolas using transformations	564
9C	Sketching parabolas using factorisation	570
9D	Sketching parabolas by completing	
	the square	576
9E	Sketching parabolas using the quadratic	
	formula and the discriminant	581
9F	Applications of parabolas	586
9G	Lines and parabolas	592
9H	Functions and their notation	601
9I	Graphs of circles	608
9J	Exponential functions and their graphs	614
9K	Hyperbolic functions and their graphs	620
9L	Cubic equations, functions and graphs	627
9M	Further transformations of graphs	637
9N	Using graphs to describe change	643

Number and Algebra Non-linear Relationships
(S5.1, S5.2, S5.3§)

Functions and Other Graphs (S5.3\#)
Ratios and Rates (S5.2, S5.3)
MA5.1-7NA, MA5.2-10NA,
MA5.3-9NA, MA5.2-5NA,
MA5.3-4NA, MA5.3-12NA

CAMBRIDGE

Cambridge University Press
978-1-107-67670-1 - CambridgeMaths: NSW Syllabus for the Australian Curriculum: Year 10: Stage 5.1/5.2/5.3
Stuart Palmer, David Greenwood, Sara Woolley, Jenny Goodman and Jennifer Vaughan
Frontmatter
More information

$\begin{aligned} & 90 \\ & 9 P \end{aligned}$	Literal equations and restrictions on variables	657	
	Inverse functions	662	
	Investigation	670	
	Challenges	672	
	Review: Chapter summary	673	
	Multiple-choice questions	675	
	Short-answer questions	677	
	Extended-response questions	681	
10 Logar	rithms and polynomials	682	Number and Algebra
	Pre-test	684	Logarithms (S5.3\#)
	Introducing logarithms	685	Polynomials (S5.3\#)
	Logarithmic graphs	689	MA5.3-10NA, MA5.3-11NA
	Laws of logarithms	700	
	Solving equations using logarithms	704	
	Polynomials	708	
	Expanding and simplifying polynomials	712	
	Dividing polynomials	715	
	Remainder theorem and factor theorem	718	
	Factorising polynomials to find zeros	721	
	Graphs of polynomials	724	
	Investigation	729	
	Challenges	730	
	Review: Chapter summary	731	
	Multiple-choice questions	732	
	Short-answer questions	733	
	Extended-response questions	735	
Semester review 2		736	
Answers		749	
Index		888	

About the Authors

Stuart Palmer was born and educated in NSW. He is a high school mathematics teacher with more than 25 years' experience teaching boys and girls from all walks of life in a variety of schools. Stuart has taught all the current NSW Mathematics courses in Stages 4, 5 and 6 numerous times. He has been a Head of Department in two schools and is now an educational consultant who conducts professional development workshops for teachers all over NSW and beyond. He
 also works with pre-service teachers at the University of Sydney and the University of Western Sydney.

David Greenwood is the Head of Mathematics at Trinity Grammar School in Melbourne and has 20 years' experience teaching mathematics from Years 7 to 12. He has run numerous workshops within Australia and overseas regarding the implementation of the Australian Curriculum and the use of technology for the teaching of mathematics. He has written more than 20 mathematics titles and has a particular interest in the sequencing of curriculum content and working with the Australian Curriculum proficiency strands.

Sara Woolley was born and educated in Tasmania. She completed an Honours degree in Mathematics at the University of Tasmania before completing her education training at the University of Melbourne. She has taught mathematics in Victoria from Years 7 to 12 since 2006 and has a keen interest in the creation of resources that cater for a wide range of ability levels.

Jenny Goodman has worked for 20 years in comprehensive State and selective high schools in NSW and has a keen interest in teaching students of differing ability levels. She was awarded the Jones Medal for education at Sydney University and the Bourke prize for Mathematics. She has written for Cambridge NSW and was involved in the Spectrum and Spectrum Gold series.

Jennifer Vaughan has taught secondary mathematics for more than 30 years in NSW, WA, Queensland and New Zealand, and has tutored and lectured in mathematics at Queensland University of Technology. She is passionate about providing students of all ability levels with opportunities to understand and to have success in using mathematics. She has taught special needs students and has had extensive experience in developing resources that make mathematical concepts more accessible.

Introduction and guide to this book

This resource developed from an analysis of the NSW Syllabus for the Australian Curriculum and the ACARA syllabus, Australian Curriculum: Mathematics. It is structured on a detailed teaching program for the implementation of the NSW Syllabus, and a comprehensive copy of the teaching program can be found on the companion website.

The language and concepts have been carefully reviewed and revised to make sure that they are effective for students doing Stage 5.1/5.2/5.3. For each section, the coverage of Stage 4, 5.1, 5.2 and 5.3 are indicated by 'ladder icons'. There is a greater number of advanced and challenging questions, compared to the Stage 5.1/5.2/5.3 textbook. However, the sequences of topics of both textbooks are aligned to make it easier for teachers using both resources.

The chapters are based on a logical teaching and learning sequence for the syllabus topic concerned, so that chapter sections can be used as ready-prepared lessons. Exercises have questions graded by level of difficulty, indicated in the teaching program, and grouped by the NSW Syllabus's working mathematically components, indicated by badges in the margin of the exercises. This facilitates the management of differentiated learning and reporting on students' achievement.

For certain topics the prerequisite knowledge has been given in sections marked as REVISION, while EXTENSION marks a few sections that go beyond the syllabus. Similarly, the word FRINGE is used to mark a few topics treated in a way that lies at the edge of the syllabus requirements, but which provide variety and stimulus. Apart from these, all topics are aligned exactly to the NSW Syllabus, as indicated at the start of each chapter and in the teaching program.

Cambridge University Press
978-1-107-67670-1 - CambridgeMaths: NSW Syllabus for the Australian Curriculum: Year 10: Stage 5.1/5.2/5.3
Stuart Palmer, David Greenwood, Sara Woolley, Jenny Goodman and Jennifer Vaughan
Frontmatter
More information

Guide to this book (continued)

Chapter summary: mind map of key concepts \& interconnections

[^0]
Working Mathematically badges

All exercises are divided into sections marked by Working Mathematically badges, such as this example:

 Communicating	 Communicating	 Communicating	 Communicating

The letters U (Understanding), F (Fluency), PS (Problem-solving), R (Reasoning) and C (Communication) are highlighted in colour to indicate which of these components apply mainly to the questions in that section. Naturally, there is some overlap between the components.

Stage Ladder icons

Shading on the ladder icons at the start of each section indicate the Stage or Stages addressed in that section.

This key explains what each rung on the ladder icon means in practical terms.
For more information see the teaching program and teacher resource package:

Stage
$5.3 \#$
5.3
$5.3 \S$
5.2
$5.2 \curlywedge$
5.1
4

Stage	Past and present experience in Stages 4 and 5	Future direction for Stage 6 and beyond
5.3\#	These are optional topics which contain challenging material for students who will complete all of Stage 5.3 during Years 9 and 10.	These topics are intended for students who are aiming to study Mathematics at the very highest level in Stage 6 and beyond.
5.3	Capable students who rapidly grasp new concepts should go beyond 5.2 and study at a more advanced level with these additional topics.	Students who have completed 5.1, 5.2 and 5.2 and 5.3 are generally well prepared for a calculus-based Stage 6 Mathematics course.
5.3§	These topics are recommended for students who will complete all the 5.1 and 5.2 content and have time to cover some additional material.	These topics are intended for students aiming to complete a calculus-based Mathematics course in Stage 6.
5.2	A typical student should be able to complete all the 5.1 and 5.2 material by the end of Year 10. If possible, students should also cover some 5.3 topics.	Students who have completed 5.1 and 5.2 without any 5.3 material typically find it difficult to complete a calculus-based Stage 6 Mathematics course.
$5.2 \bigcirc$	These topics are recommended for students who will complete all the 5.1 content and have time to cover some additional material.	These topics are intended for students aiming to complete a non-calculus course in Stage 6, such as Mathematics General.
5.1	Stage 5.1 contains compulsory material for all students in Years 9 and 10. Some students will be able to complete these topics very quickly. Others may need additional time to master the basics.	Students who have completed 5.1 without any 5.2 or 5.3 material have very limited options in Stage 6 Mathematics.
4	Some students require revision and consolidation of Stage 4 material prior to tackling Stage 5 topics.	

Additional resources online

CAMBRIDGE Hotmaths

INTEGRATED PROGRAM

The CambridgeMATHS/HOTmaths integrated program for the Australian Curriculum offers the best of textbook and interactive online resources. It can be used with a HOTmaths account (eg for class demos via IWBs or data projectors) or with student accounts, which enable access to the full range of features, including use at home.

The integrated program is linked from icons and the topic numbers in the textbooks, as detailed in a document available (free) from the Cambridge website.

COURSE: CambridgeMATHS 7 NSW AC -
TORICS: Solect A Topic
- Review
- 1 Computation with positive integers
- 2 Angle relationships
- 3 Computation with positive and negative integ
- 4 Understanding fractions, decimals and percen

All HOTmaths features are included in the program, eg:

\longleftarrow Practice quizzes with competitive scoring option
www.cambridge.edu.au/hotmaths

Acknowledgements

The author and publisher wish to thank the following sources for permission to reproduce material:

Images: © Alamy / blickwinkel, p.503; © Bidgee. Creative Commons Attribution-Share Alike 2.5 Australia license; © Corbis / Ludo Kuipers, p. 246 / STR/epa, p.729; © Flying Cloud, p.314; © iStockphoto / David Freund, p. 123 / Jim Kolaczko, p.135; Used under license 2013 from Shutterstock. com / Marteric, pp.2-3 / Jan Gottwald, p. 5 / concept w, p. 9 / YanLev, p. 10 / Theodore Scott, p. 12 / atej Hudovernik, p. 15 / Alexander Raths, p. 20 / Mauro Pezzotta, p. 21 / Orange Line Media, p. 27 / VIPDesignUSA, p. 29 / Konstantin L, p. 35 / auremar, pp.38, 435(b) / kukuruxa, p. 40 / Dmitrijs Mihejevs, p. 44 / Radu Razvan, p. 46 / Andrey_Kuzmin, p. 50 / Mopic, p. 51 / mihalec, p. 59 / Mikhail Tchkheidze, p. $60(\mathrm{t})$ / Anton Balazh, pp. 60 (b), 601 / vicspacewalker, p. 64 / sarah2, p. 66 / IvanMiladinovic, p. 67 / ene, pp.68-69 / John T Takai, p. 77 / javarman, p. 80 / Olaf Speier, p. 99 / Yuriy Chertok, p. 103 / Marques, p. 104 / Nixx Photography, p. 105 / Sebastian Kaulitzki, p. 107 / Jirsak, p. 113 / max blain, p. 116 / lightpoet, pp.117, 492 / BatlomiejMagierowski, p. 118 / Dainis Derics, p.121(t) / epstock, p.121(b) / Mark Herreid, pp.122(1), 464 / Stana, p.122(r) / Andy Dean Photography, p. 124 / alexskopje, p. 125 / Kevin Hellon, p. 130 / Andrey Chmelyov, p. 131 / EmiliaUngur, pp.132-133 / Maciej Oleksy, p. 138 / mypokcik, p. 139 / comodore, p. 140(t) / David Evison, p. 140(b) / Timo Kohlbacher, p. 141 / Naiyyer, p. 142 / Racheal Grazias, pp.147, 710 / iofoto, pp.148, 231(t), 432 / mangostock, p. 149 / Vetal, p. 150 / Patryk Kosmider, p. 151 / Christo, p.154(t) / hfng, p.154(b) / Mat Hayward, p. 156 / @erics, p. 158 / Simon Greig, p. 159(man) / Robyn Mackenzie, p. 159 (pie) / Evlakhov Valeriy, p.159(beer) / Umierov Nariman, p. 160 / Andresr, pp.161, 184(b), 309 / Wojciech Beczynski, p. 166 / Keith Gentry, p. 167 / Poznyakov, p. 169 / Kzenon, p. 173 / SVLuma, p. 174 / Pakhnyushcha, p. 175 / photomak, p. 179 / Real Deal Photo, p. 180 / paul prescott, p. 182 / alysta, p. 183 / Nick Stubbs, p.184(t) / Malyugin, p. 189 / Sam DCruz, pp.190-191, 310 / NAN728, p. 198 / EcoPrint, p. 201 / Winthrop Brookhouse, p. 203 / AISPIX, p. 204 / Stephen Mcsweeny, p. 206 / debr22pics, p. 208 / Lusoimages, p. 209 / Maksim Toome, p. 211 / irakite, p. 213 / Laurence Gough, pp.215, 223 / Benis Arapovic, p. 216 / Taras Vyshnya, pp.217, 500-501 / deva, p. 221 / Lauren Cameo, p. 224 / stavklem, p. 225 / Lance Bellers, p. 226 / Zurijeta, p. 227 / Grandpa, p. 231 (b) / David Lee, p. 234 / zhu difeng, p. 239 / Lisa Turay, p. 240 / Robert Kneschke, p. 245 / Volodymyr Goinyk, p. 247 / Vadym Drobot, p. 248 / Poleze, p. 251 / gallimaufry, p.253(t) / Dmitrijs Dmitrijevs, p.253(b) / kaband, pp.254-255 / Monkey Business Images, pp.257, 307 / AlexRoz, p. 261 / Cliff Lloyd, p. 262 / Rainer Plendl, p. 268 / Ljupco Smokovski, pp.271, 546 / bikeriderlondon, pp.272, 599 / Dmitry Kalinovsky, pp.273, 425 / Yuri Arcurs, p. 277 / Jeannette Meier Kamer, p. 279 / Inc, p. 283 / Chris Geszvain, p. 285 / Alex Pix, p. 290 / Paul B. Moore, p. 291 / fritz16, p. 292 / CROM, p. 293 / AVAVA, p. 297 / hin255, p. 304 / Cloudia Newland, p. 308 / Alan Heartfield, p. 312 / Faraways, p.316(t) / Eric Gevaert, p.316(c) / Cre8tive Images, p.316(b) / SueC, p. 317 / Rikard Stadler, p. 327 / Sebastian Kaulitzki, p.328(l\&r) / Goodluz, p. 333 / Deklofenak, p. 334 / SurangaWeeratunga, pp.346-347 / Tan Kian Khoon, p. 360 / Andrey Burmakin, p.371(t) / rossco, p.371(b) / Layland Masuda, p.374(t) / homydesign, p.374(b) / Orla, p. 376 / Zacarias Pereira da Mata,
p. 377 / Jorg Hackemann, p. 379 / Tamara Kulikova, p. 382 / Semjonow Juri, p. 384 / AISPIX, p. 398 / Kitch Bain, p. 403 / Philip Lange, p. 408 / ssguy, p. 409 / Pincasso, pp. $422-423$ / Vitaly M, p. 429 / topal, p. 430 / Bertold Werkmann, p. $435(\mathrm{t})$ / deb22, p. 437 / Alexandra Roganova, p. 439 / Andrea Danti, p. $440(\mathrm{t})$ / Chrislofoto, p.440(b) / ILYA GENKIN, p. 441 / Brent Wong, p. 442 / Rafael Ramirez Lee, p.445(t) / jxf, p. 445 (b) / hightowernrw, p. 446 / Dmitry Bodrov, p. 447 / Rtimages, p. 448 / emei, p. 449 / omers, p. 451 / nicobatista, p. 452 / THP I Tim Hester Photography, p. 453 / Vladyslav Danilin, p. 460 / Curioso, p. 463 / Shout It Out Design, p. 465 / Mircea Bezergheanu, p.469(t) / Balefire, p.469(b) / jamalludin, p.482(b) / Gordon Heeley, p. 485 / goory, p. 497 / Ralph Loesche, p. 498 / MelBrackstone, p. 499 / Dmitriy Shironosov, p. 515 / kanvag, p. 519 / smilewithjul, p. 521 / corepics, p. 525 / Vladitto, p. 526 / Peter Hansen, p. 531 / TFoxFoto, p. 533 / Fer Gregory, p.534(t) / Ian Bracegirdle, p.534(b) / Amy Johansson, p. 539 / Alberto Zornetta, p. 543 / Losevsky Pavel, p. 550 / konmesa, p. 551 / J.D.S, pp. $552-553$ / Flashon Studio, p. 555 / planet5D LLC, p. 564 / Bull's-Eye Arts, p. 569 / Nadja Antonova, p. 574 / Konstantin Chagin, p. 581 / Kevin Tavares, p. 586 / William Farquhar, p.588(t) / oksana.perkins, p.588(b) / Kaspars Grinvalds, p. 589 / koka55, p.590(t) / Natali Glado, p.590(b) / JJ pixs, p. 591 / WitthayaP, p. 600 / Kamil Macniak, p. 607 / B Brown, p. 608 / Veronika Trofer, p. 618 / sjgh, p. 620 / Milos Luzanin, p. 627 / Pekka Nikonen, p. 634 / MarcelClemens, p.635(t) / leisuretime70, p.635(b) / Lorenzo Mondo, p. 643 / Pressmaster, pp.645, 649, 682-683 / Kletr, p. 652 / David Pruter, p. 653 / Susan Flashman, p. 654 / Peter Bernik, p. 656 / Phillip Rubino, p. 657 / Iamnao, p. 660 / kavram, p. 678 / Ing. Scheider Markus, p. 681 / Kenneth William Caleno, p. 685 / Darrenp, p.697(t) / Val Thoermer, p.697(b) / Laborant, p.703(l) / stevanovic.igor, p.703(r) / Sybille Yates, p. 704 / Henrik Larsson, p. $706(t)$ / marilook, p. 706 (b) / Anatoliy Meshkov, p. 707 / Qoqazian, p. 735 / Dragon Images, p.748; © Triezel327, p.481; Wikimedia Commons. Public domain, pp.14, 108, 298.

Every effort has been made to trace and acknowledge copyright. The publisher apologises for any accidental infringement and welcomes information that would redress this situation.

All curriculum material taken from NSW Mathematics 7-10 Syllabus © Board of Studies NSW for and on behalf of the Crown in right of the State of New South Wales, 2012.

Cambridge GO
 YOUR GATEWAY ONLINE

Digital resources and support material for schools.

THIS TEXTBOOK IS SUPPORTED BY ONLINE RESOURCES

Additional resources are available free for users of this textbook online at Cambridge GO and include:

- the PDF Textbook - a downloadable version of the student text, with notetaking and bookmarking enabled
- activities in Word format
- links to other resources.

Use the unique 16 -character access code found in the front of this textbook to activate these resources.

About the Interactive Textbook...

The Interactive Textbook is designed to make the online reading experience meaningful, from navigation to display. It also contains a range of extra features that enhance teaching and learning in a digital environment, including access to the Study Toolkit in PDF format.
Access the Interactive Textbook by purchasing a unique 16 -character access code from your Educational Bookseller, or you may have already purchased the Interactive Textbook as a bundle with this printed textbook. The access code and instructions for use will be enclosed in a separate sealed pocket.
The Interactive Textbook is available on a calendar year subscription. For a limited time only, access to this subscription has been included with the purchase of the enhanced version of the printed student text at no extra cost. You are not automatically entitled to receive any additional interactive content or updates that may be provided on Cambridge $G O$ in the future.
Preview online at:

www.cambridge.edu.au/go

[^0]: Chapter reviews with multiple-choice, short-answer and extended-response questions

