A COURSE IN MATHEMATICAL ANALYSIS
Volume II: Metric and Topological Spaces, Functions of a Vector Variable

The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in the first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors.

Volume I focuses on the analysis of real-valued functions of a real variable. This second volume goes on to consider metric and topological spaces. Topics such as completeness, compactness and connectedness are developed, with emphasis on their applications to analysis. This leads to the theory of functions of several variables: differentiation is developed in a coordinate free way, while integration (the Riemann integral) is established for functions defined on subsets of Euclidean space. Differential manifolds in Euclidean space are introduced in a final chapter, which includes an account of Lagrange multipliers and a detailed proof of the divergence theorem. Volume III covers complex analysis and the theory of measure and integration.

D. J. H. Garling is Emeritus Reader in Mathematical Analysis at the University of Cambridge and Fellow of St. John’s College, Cambridge. He has fifty years’ experience of teaching undergraduate students in most areas of pure mathematics, but particularly in analysis.
A COURSE IN
MATHEMATICAL ANALYSIS

Volume II
Metric and Topological Spaces,
Functions of a Vector Variable

D. J. H. G A R L I N G
Emeritus Reader in Mathematical Analysis,
University of Cambridge, and
Fellow of St John’s College, Cambridge
Contents

Volume II

Introduction
page ix

<table>
<thead>
<tr>
<th>Part Three</th>
<th>Metric and topological spaces</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Metric spaces and normed spaces</td>
<td>301</td>
</tr>
<tr>
<td>11.1</td>
<td>Metric spaces: examples</td>
<td>303</td>
</tr>
<tr>
<td>11.2</td>
<td>Normed spaces</td>
<td>309</td>
</tr>
<tr>
<td>11.3</td>
<td>Inner-product spaces</td>
<td>312</td>
</tr>
<tr>
<td>11.4</td>
<td>Euclidean and unitary spaces</td>
<td>317</td>
</tr>
<tr>
<td>11.5</td>
<td>Isometries</td>
<td>319</td>
</tr>
<tr>
<td>11.6</td>
<td>The Mazur–Ulam theorem</td>
<td>323</td>
</tr>
<tr>
<td>11.7</td>
<td>The orthogonal group O_d</td>
<td>327</td>
</tr>
</tbody>
</table>

12	Convergence, continuity and topology	330
12.1	Convergence of sequences in a metric space	330
12.2	Convergence and continuity of mappings	337
12.3	The topology of a metric space	342
12.4	Topological properties of metric spaces	349

13	Topological spaces	353
13.1	Topological spaces	353
13.2	The product topology	361
13.3	Product metrics	366
13.4	Separation properties	370
13.5	Countability properties	375
13.6	*Examples and counterexamples*	379

| 14 | Completeness | 386 |
| 14.1 | Completeness | 386 |
Contents

14.2 Banach spaces 395
14.3 Linear operators 400
14.4 *Tietze's extension theorem* 406
14.5 The completion of metric and normed spaces 408
14.6 The contraction mapping theorem 412
14.7 *Baire's category theorem* 420

15 **Compactness** 431
15.1 Compact topological spaces 431
15.2 Sequentially compact topological spaces 435
15.3 Totally bounded metric spaces 439
15.4 Compact metric spaces 441
15.5 Compact subsets of $C(K)$ 445
15.6 *The Hausdorff metric* 448
15.7 Locally compact topological spaces 452
15.8 Local uniform convergence 457
15.9 Finite-dimensional normed spaces 460

16 **Connectedness** 464
16.1 Connectedness 464
16.2 Paths and tracks 470
16.3 Path-connectedness 473
16.4 *Hilbert's path* 475
16.5 *More space-filling paths* 478
16.6 Rectifiable paths 480

Part Four Functions of a vector variable 483

17 **Differentiating functions of a vector variable** 485
17.1 Differentiating functions of a vector variable 485
17.2 The mean-value inequality 491
17.3 Partial and directional derivatives 496
17.4 The inverse mapping theorem 500
17.5 The implicit function theorem 502
17.6 Higher derivatives 504

18 **Integrating functions of several variables** 513
18.1 Elementary vector-valued integrals 513
18.2 Integrating functions of several variables 515
18.3 Integrating vector-valued functions 517
18.4 Repeated integration 525
18.5 Jordan content 530
Contents

- **18.6 Linear change of variables**
 - Page: 534
- **18.7 Integrating functions on Euclidean space**
 - Page: 536
- **18.8 Change of variables**
 - Page: 537
- **18.9 Differentiation under the integral sign**
 - Page: 543

19 **Differential manifolds in Euclidean space**
- **19.1 Differential manifolds in Euclidean space**
 - Page: 545
- **19.2 Tangent vectors**
 - Page: 548
- **19.3 One-dimensional differential manifolds**
 - Page: 552
- **19.4 Lagrange multipliers**
 - Page: 555
- **19.5 Smooth partitions of unity**
 - Page: 565
- **19.6 Integration over hypersurfaces**
 - Page: 568
- **19.7 The divergence theorem**
 - Page: 572
- **19.8 Harmonic functions**
 - Page: 582
- **19.9 Curl**
 - Page: 587

Appendix B Linear algebra
- **B.1 Finite-dimensional vector spaces**
 - Page: 591
- **B.2 Linear mappings and matrices**
 - Page: 594
- **B.3 Determinants**
 - Page: 597
- **B.4 Cramer’s rule**
 - Page: 599
- **B.5 The trace**
 - Page: 600

Appendix C Exterior algebras and the cross product
- **C.1 Exterior algebras**
 - Page: 601
- **C.2 The cross product**
 - Page: 604

Appendix D Tychonoff’s theorem
- Page: 607

Index
- Page: 612

Contents for Volume I
- Page: 618

Contents for Volume III
- Page: 621
Introduction

This book is the second volume of a full and detailed course in the elements of real and complex analysis that mathematical undergraduates may expect to meet. Indeed, it was initially based on those parts of analysis that undergraduates at Cambridge University meet, or used to meet, in their first two years. There is however always a temptation to go a bit further, and this is a temptation that I have not resisted. Thus I have included accounts of Baire’s category theorem, and the Arzelà–Ascoli theorem, which are taught in the third year, and the Mazur–Ulam theorem, which, as far as I know, has never been taught. As a consequence, there are certain sections that can be omitted on a first reading. These are indicated by asterisks.

Volume I was concerned with analysis on the real line. In Part Three, the analysis is extended to a more general setting. We introduce and consider metric and topological spaces, and normed spaces. In fact, metric and metrizable spaces are sufficient for all subsequent needs, but many of the properties that we investigate are topological properties, and it is well worth understanding what this means. The study of topological spaces can degenerate into the construction of pathological examples; once again, temptation is not resisted, and Section 11.6 contains a collection of these. This section can be omitted at a first reading (and indeed at any subsequent reading). Baire’s category theorem is proved in Section 12.6: it is remarkable that a theorem with a rather easy proof can lead to so many strong conclusions, but this is another section that can be omitted at a first reading. The notion of compactness, which is a fundamental topological idea, is studied in some detail. Tychonoff’s theorem on the compactness of the product of compact spaces, which involves the axiom of choice, is too hard to include here: a proof is given in Appendix D.
Introduction

In Part Four, we come back down to earth. The principal concern is the differentiation and integration of functions of several variables. Differentiation is interesting and reasonably straightforward, and we consider functions defined on a normed space; this shows that the results do not depend on any particular choice of coordinate system. Integration is another matter. To begin with it seems that the ideas of Riemann integration developed in Part Two carry over easily to higher dimensions, but serious problems arise as soon as a non-linear change of variables is considered. It is however possible to establish results that suffice in a great number of contexts. For example, the change of variables results are used in Volume III, where we introduce the Lebesgue measure, and the corresponding theory of integration. These results on differentiation and integration are applied in Chapter 19, where we consider subspaces of a Euclidean space which are differential manifolds – subspaces which locally look like Euclidean space.

This volume requires the knowledge of some elementary results in linear algebra; these are described and established in Appendix B.

The text includes plenty of exercises. Some are straightforward, some are searching, and some contain results needed later. All help to develop an understanding of the theory: do them!

I am extremely grateful to Zhuo Min ‘Harold’ Lim who read the proofs, and found embarrassingly many errors. Any remaining errors are mine alone. Corrections and further comments can be found on a web page on my personal home page at www.dpmms.cam.ac.uk.