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Introduction

Our purpose in this monograph is to provide a concise and complete

introduction to the study of arithmetic differential operators over the

p-adic integers Zp. These are the analogues of the usual differential op-

erators over say, the ring C[x], but where the role of the variable x is

replaced by a prime p, and the roles of a function f(x) and its deriva-

tive df/dx are now played by an integer a * Z and its Fermat quotient

δpa = (a2 ap)/p.

In making our presentation of these type of operators, we find no bet-

ter way than discussing the p-adic numbers in detail also, and some of

the classical differential analysis on the field of p-adic numbers, empha-

sizing the aspects that give rise to the philosophy behind the arithmetic

differential operators. The reader is urged to contrast these ideas at will,

while keeping in mind that our study is neither exhaustive nor intended

to be so, and most of the time we shall content ourselves by explain-

ing the differential aspect of an arithmetic operator by way of analogy,

rather than appealing to the language of jet spaces. But even then, the

importance of these operators will be justified by their significant ap-

pearance in number theoretic considerations. One of our goals will be to

illustrate how different these operators are when the ground field where

they are defined is rather coarse, as are the p-adic integers Zp that we

use.

In order to put our work in proper perspective, it is convenient to

introduce some basic facts first, and recall a bit of history. Given a

prime p, we may define the p-adic norm � �p over the field of rational

numbers Q. The completion of the rationals in the metric that this norm

induces is the field Qp of p-adic numbers, and this field carries a non-

Archimedean p-adic norm extending the original p-adic norm on Q. This

is the description ofQp as given by K. Hensel circa 1897 (see, for instance,
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2 Introduction

[28]). Two decades later, A. Ostrovski [39] proved that any nontrivial

norm on Q is equivalent to either the Euclidean norm or to a p-adic norm

for some prime p. In this way, there arose the philosophical principle that

treats the real numbers and all of the p-adic numbers on equal footing.

In the twentieth century, the p-adic numbers had a rich history. We

briefly mention some major results.

The idea that studying a question about the field Q can be answered

by putting together the answers to the same question over the fields R

and Qp for all ps was born with the Hasse–Minkowski’s theorem. This

states that a quadratic form over Q has a nontrivial zero in Qn if, and

only if, it has a nontrivial zero in Rn and a nontrivial zero in Qn
p for

each prime p. This theorem was proven by Hasse in his thesis around

1921 [27], the problem having been proposed to him by Hensel who had

proven the n = 2 case a few years earlier. Such a principle fails for cubics.

The development above came after several interesting results that pre-

ceded the introduction of the p-adic numbers. The local-to-global princi-

ple embodied in the Hasse–Minkowski theorem had a precedent in Rie-

mannian geometric, since as recently as 1855, Bonnet had proved that

if the curvature of a compact surface was bounded below by a positive

constant, then its diameter was bounded above by a quantity depending

only on the said constant. Strictly on the arithmetic side of things, in

the seventeenth century J. Bernoulli defined the Bernoulli numbers Bk,

the coefficients in the expansion et/(et 2 1) =
�

k Bkt
k/k!, used them

to compute closed-form expressions for the sums
�m

j=0 j
n, and devel-

oped several identities that these numbers satisfy. A century later, the

Bernoulli numbers were used by Euler to show heuristically that if ζ is

the Riemman zeta function, then ζ(12k) =
�∞

n=1 1/n
1−k = 2Bk/k for

any integer k g 2. In the mid nineteenth century, Riemman proved that

ζ(s) =
�∞

n=1 1/n
s is a meromorphic function on the complex plane C,

giving Euler’s argument complete sense. Further, he used the Gamma

function to define Λ(s) = π− s

2Γ
�
s
2

�
ζ(s) and proved the functional equa-

tion Λ(s) = Λ(1 2 s). The intimate relationship between the Bernoulli

numbers and the values of ζ(s) at negative integers led to the idea that

these numbers have profound arithmetical properties, a fact discovered

by Kummer in his work on Fermat’s last theorem circa 1847. The ideal

class group of Q(ζN ), ζN a primitive N -th root of unity, is the quotient

of the fractional ideals of Q(ζN ) by the set of principal ideals, and it

turns out to be a group of finite order hN with respect to ideal multipli-

cation. A prime p is said to be regular if p � hp, and irregular otherwise.

Kummer proved that p is regular if, and only if, p does not divide the
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Introduction 3

numerator of B2, B3, . . . , Bp−3 and that Fermat last theorem holds for

all regular primes. He also proved that, if m c n "c 0 mod p 2 1, then

Bm/m c Bn/n mod p, the congruences that are nowadays named after

him. They led to the proof that that there are infinitely many irregular

primes. Since heuristically it can be proven that there is a large per-

centile of regular primes, Kummer’s ideas had remarkable implications

in the study of Fermat’s last theorem. Thus, algebraic number theory

and the theory of L-functions were born and replaced the elementary

methods used before him in the analysis of this problem.

C. Chevalley defined the adèle ring and idèle group [20], and used them

to reformulate class field theory [21] around 1932. For convenience, if we

denote by � �∞ the Euclidean norm in R, which we think of as Q∞, the

field of p-adic numbers corresponding to p = >, we take the Cartesian

product Q∞ ×
�

p Qp, and define the adèle ring AQ to be

AQ =

�
(a∞, a2, a3, a5, . . .) * Q∞ ×

�

p

Qp : ||ap||p f 1 for almost all ps

"
.

Its ring structure is obtained by defining addition and multiplication

component-wise; it contains an isomorphic image of Q via the mapping

Q � q
aQ

³ (q, q, . . .) * AQ .

For a * Q∞ ×
�

p Qp, we define ||a||p = ||ap||p. Then a * AQ if, and only

if, ||a||p f 1 for all but finitely many ps. The subset IQ of AQ consisting

of all as such ||a||p "= 0 for all ps, and ||a||p = 1 for all but finitely many of

them, is the idèle multiplicative group. It contains an isomorphic image

of Q× by restriction of the mapping aQ above. If F is an extension of

Q, the norms on Q can be extended to norms on F , and we naturally

define IF also. There is a norm homomorphism IF ³ IQ, and its image

N(IF /IQ) is a group. The Galois group of F/Q is naturally isomorphic

to IQ/Q
×N(IF /IQ). Chevalley proved this fact using the local theory,

avoiding the use of tools from analytic number theory. He generalized it

also for number fields, fields that are extensions of Q of infinite degree.

In his thesis, J. Tate used real harmonic analysis on the adèles to

prove functional equations for the Riemann zeta function. T. Kubota

and H.W. Leopoldt [32] introduced a p-adic version of the Riemann zeta

function, and used it to interpret Kummer’s congruences for Bernoulli

numbers mentioned above, which date back to 1851. Y.I. Manin and

B. Mazur [38] interpreted the result of Kubota and Leopoldt in terms

of a p-adic Mellin transform, and found p-adic interpretations of L-
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4 Introduction

functions of elliptic curves. The p-adic integers Zp were known to appear

as Galois groups of some infinite cyclotomic extensions. K. Iwasawa con-

sidered the completed group algebras of these Galois groups, which act

on class groups and make them modules over the completed groups.

These modules have some invariants. Iwasawa conjectured that these

invariants could be read off from classical Dirichlet L-functions after a

p-adic interpolation, using the p-adic Mellin transform. This conjecture

was proved by B. Mazur and A. Wiles [33]. Triggered by the work of

Tate, B. Dwork studied p-adic differential equations, and gave a p-adic

proof of the rationality of Weil’s zeta function [23], taking then a major

step in the settling of all of the Weil conjectures about this function

[48], work that was completed by P. Deligne [22]. J.-P. Serre and N.

Katz studied several other p-adic functions of arithmetic interest, and

A. Grothendieck studied p-adic cohomology and crystalline cohomology.

The list of problems in the field is outstanding, and the list of contrib-

utors to their understanding and resolution is important. We have not

come even close to exhausting either one. But we can now retake the

main theme of our work in this introduction with a better perspective

in mind.

In the course of modern mathematical history, analogies between func-

tions and numbers have played an important role in the development of

number theory. The fundamental theorems of algebra and arithmetic

can be seen as counterparts to each other, with the integers 21, 0 and 1

playing the role of the constant polynomials in C[x]. This point of view is

once again motivational to the philosophy of arithmetic differential oper-

ators, the idea at the level of the integers Z being to find an appropriate

substitute δp : Z ³ Z for the derivative operator

∂x =
d

dx
: C[x] ³ C[x] .

Indeed, given a “number” x, lets us think of it as a “function,” and

consider the expression x2 xp, one that makes frequent appearances in

number theoretic considerations. For Fp, the finite field of p elements, the

identity x2xp = 0 holds for all elements. In the more general situation,

we can restrict our attention to numbers such that x 2 xp c 0 mod p.

We think of x as a function of p, and interpret the difference x2 xp as

the variation of x as its argument changes to p. We then use the Fermat

quotient

δpx =
x2 xp

p
(†)
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Introduction 5

to define the notion of arithmetic derivative of x in the direction of p.

This is the notion that we shall be studying here, most of the time

restricting our attention to xs that are taken from the ring of p-adic

integers Zp. At this point, though, this quotient is just a heuristic state-

ment.

The theory of arithmetic differential operators that ensues from the

idea outlined above was proposed by A. Buium [6, 8], with δp serving in

the role of the arithmetic analogue of the operator ∂x on the polynomial

ring C[x]. At the purely arithmetic level, it serves also as a substitute

for Dwork’s operator

d

dx
: Fp[x] ³ Fp[x]

in his theory of p-adic differential equations over the differential field

Fp[x], Fp the algebraic closure of the field Fp with p-elements. In Dwork’s

theory [25], the xs are still being viewed as an “argument to the func-

tions” rather than as functions themselves. But the arithmetic differen-

tial operator δp exhibits an additional fundamental difference with the

Dwork’s operator that is worth pointing out now: δp is highly nonlin-

ear, with additivity holding only modulo a lower order term measured

by a polynomial with integer coefficients, and a Leibniz rule that holds

but only highly intertwined with the p-th power homomorphism, and

modulo terms that are p-adically smaller.

In fact, more can be said at this point. If we were to develop a differ-

ential theory with operators of the type

u �³ P

�
u,

du

dx
, . . . ,

dru

dxr

�

where P (x0, . . . , xr) is a polynomial function, we would obtain the

Ritt–Kolchin theory of “ordinary differential equations” with respect

to d
dx
, cf. [41, 30, 19]. This would lead to the notion of the d

dx
-character

of an algebraic group, which should be viewed as the analogue of a linear

ordinary differential operator on an algebraic group (cf. to the Kolchin

logarithmic derivative of algebraic groups defined over �Zur
p , [30, 19], and

the Manin maps of Abelian varieties defined over �Zur
p [[q]] [38, 12], �Zur

p

the unramified completion of the ring of p-adic integers).

If instead we were to develop a theory with operators that are the

p-adic limits of P (u, δpu, . . . , δ
r
pu), P (x0, . . . , xr) a polynomial, we would

then obtain the arithmetic analogue of the ordinary differential equations

of Buium, as found in [8, 9, 6]. In particular, we would then arrive at
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6 Introduction

the notion of a δp-character of a group scheme, the arithmetic “version”

of a linear ordinary differential equation on a group scheme.

In this monograph, we apply and study Buium’s idea over the rather

coarse ring of p-adic integers Zp. We think of the elements in this ring

as functions over a space of dimension zero that vary infinitesimally ac-

cording to the heuristic equation (†) at the prime p. The ensuing notion

of derivative is the one alluded to in the title, and on which we shall elab-

orate extensively in what follows. We will pause at some point to define

these arithmetic operators with the generality given in Buium’s work.

This will benefit the interested reader while allowing us to contrast the

behaviour of these operators when defined over Zp or �Zur
p . Ultimately,

it is the fact that we can cast these operators as global functions on

a suitable arithmetic jet space, for any smooth scheme of finite type,

which allows for their interpretation as differential operators of sorts,

the way the usual differential operators on a manifold are sections of its

jet bundles.

Given such a notion of arithmetic derivative, we then may define in the

obvious manner an arithmetic differential operator of order n, where n is

an arbitrary positive integer. Over the ring of p-adic integers Zp, we have

also the classical notion of an analytic function. We shall show that all

arithmetic differential operators turn out to be analytic functions. Quite

remarkably in fact, characteristic functions of p-adic discs are shown

to be equal to arithmetic operators of an order that depends upon the

radius of the disc, generalizing a result that we first prove via an explicit

construction, namely that the characteristic function of a disc of radius

1/2 over the 2-adic integers is an arithmetic differential operator of order

one. The extended result for a general prime is a bit surprising, point

upon which we will elaborate in due course.

We organize our work as follows: in Chapter 2, we summarize the

construction of the p-adic numbers and the p-adic integers, describe its

topology as a metric space, its analytic and algebraic properties, and

study the (p21)-roots of unity in it. In Chapter 3 we study some results

from classical analysis on Qp, including Mahler’s theorem that estab-

lishes a bijection between the sets of restricted sequences and that of con-

tinuous functions on Zp, we present basic properties of the

Artin–Hasse function, and study the analytic completion of the alge-

braic closure of Qp, the p-adic alter ego of the complex numbers that

result when we complete Q in the Euclidean metric instead. In Chapter

4 we introduce the set of analytic functions as a required preliminary to

our discussion later on. The arithmetic differential operators make their
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Introduction 7

first appearance in Chapter 5, where we tie them to their associated ho-

momorphisms. This in turn allows us to prove that equation (†) defines

the only arithmetic differential operator over Zp since this ring carries

just one automorphism. Using it as a building block, we define an arith-

metic differential operator of any order. We discuss also the basic rings

that must be used in the theory when we have multiple primes, essen-

tially to indicate the additional difficulties that arise then. In Chapter 6

we pause to define arithmetic operators in general, developing succinctly

the theory of arithmetic jet spaces of Buium. In order to make things

easier for analysts not accustomed to algebraic concepts, we present a

list of the concepts from commutative algebra and schemes that are

needed in the development of the general theory. In the case of group

schemes, we discuss the characters that have been alluded to earlier, the

analogs in the theory of the linear differential operators. And we outline

the theory for multiple primes also, in a succinct manner. In Chapter 7

we prove that all arithmetic differential operators over Zp are analytic

functions. In Chapter 8 we study characteristic functions of p-adic discs

from the point of view of the theory of arithmetic differential operators,

and prove that they are indeed differential operators of an order depend-

ing upon the radii of the discs. The prime p = 2 manifests itself in a

rather special manner here, as we are able to prove by way of a direct

argument that the characteristic function of a discs of radius 1/2 over

the 2-adic integers is an arithmetic differential operator of order one.

This work is carried out in standard coordinates, and leads to some for-

mal power series representations of the characteristic functions when the

prime in question is singular, a concept that we define then. In Chapter

9 we work with harmonic coordinates, and improve significantly upon

the result in the previous chapter, showing that all analytic functions on

Zp are arithmetic differential operators, with the order being equal to

the level of analiticity. This last concept had made its first appearance

earlier, in the context of Chapter 4. Finally, in Chapter 10, we exhibit

some fundamental differences in the behavior of arithmetic differential

operators that manifest when we work over the ring �Zur
p instead of Zp.

In particular, we indicate how to show that as soon as we adjoin one

unramified root of unity to Zp, the counterpart of the theorem above on

the characteristic function of discs no longer holds.
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The p-adic numbers Qp

The field Qp of p-adic numbers is the completion of the field Q of rational

numbers with respect to the p-adic norm. In this chapter, we explain

their construction from various points of view, all, of course, equivalent

to each other.

Let p * Z be a prime that we fix hereafter. For a * Z, we let ordp a

be the exponent of p in the prime factorization of a, that is to say, the

integer l such that a = plr, where r * Z is not divisible by p. This

notion is extended to a rational number q = a/b by setting ordp q =

ordp a 2 ordp b, and the resulting function is multiplicative, that is to

say, it has the property that ordp q1q2 = ordp q1 + ordp q2. We then

define the p-adic norm function on Q by

||q||p =
1

pordp q
. (2.1)

We shall denote by dp the metric on Q that this norm induces.

In the resulting norm on Q, a rational q has ||q||p f 1 if, and only if,

the denominator b of its reduced rational form a/b is not divisible by p.

Integers are closer to each other in the metric dp on Q the higher the

power of p that divides their difference. So, for instance,

d5(2, 1) = ||12 2||5 = 1, while d5(2, 127) = ||22 127||5 =
1

53
.

The p-adic norm satisfies a condition stronger than the triangle in-

equality. Indeed, if q = a/b and r = c/d, since the biggest power of p

that divides ad+bc is at least the minimum of the biggest power dividing

8
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The p-adic numbers Qp 9

ad and the biggest power dividing bc, we have that

ordp (q + r) = ordp

�
ad+ bc

bd

�

g min {ordp ad, ordp bc} 2 ordp b2 ordp d

= min {ordp a+ ordp d, ordp b+ ordp c} 2 ordp b2 ordp d

= min {ordp a2 ordp b, ordp c2 ordp d}

= min {ordp q, ordp r} ,

and therefore,

||q + r||p =
1

pordp (q+r)
f max {p−ordp q, p−ordp r} = max {||q||p , ||r||p} .

(2.2)

The triangle inequality now follows readily. This stronger inequality

(2.2), referred to as the “non-Archimedean property” of � �p, produces

some geometric results that contrast a bit with those from our more

traditional point of view in Euclidean geometry. Triangles, for instance,

are all isosceles.

For let us assume that we have a “triangle with vertices at 0, q and r,”

respectively. We then know that ||q 2 r||p f max {||q||p , ||r||p}. If ||q||p <

||r||p, the non-Archimedean property of the norm implies that

||q 2 r||p f ||r||p .

Since ||r||p = ||q 2 (q 2 r)||p f max {||q||p , ||q 2 r||p}, it follows that

||r||p f ||q 2 r||p

also. Thus, ||r||p = ||q 2 r||p and so, in the geometry generated by � �p,

all triangles are isosceles, with the two largest sides equal to each other

in length. Sometimes we shall refer to this as the “isosceles triangle

property” of � �p.

Now we describe briefly the general process that defines Qp as the

metric completion of Q in the distance defined by the p-adic norm. This

yields Qp as the unique complete field, up to isometric isomorphism,

that contains a � �p-isometric dense copy of the field Q.

We say that a sequence {qn} of rational numbers is Cauchy with re-

spect to the norm � �p, if for any real number ε > 0 there exists N such

that ||qn 2 qm||p < ε for all n,m g N . We say that the sequence {qn} is

null if for any ε > 0 there exists N such that ||qn||p < ε for all n g N .

Given rational Cauchy sequences {qn} and {rn}, we define their ad-

dition and multiplication by

{qn}+ {rn} = {qn + rn} , {qn}{rn} = {qnrn} .
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10 The p-adic numbers Qp

Let R be the set of all rational Cauchy sequences, and let M be the

subset of all null sequences. The operations above provide R with a ring

structure, and M becomes an ideal in R. In fact, M is a maximal ideal.

For if {qn} * R is not null, there exists an ε > 0 and an integer N such

that ||qn||p > ε for any n > N , and we may set

rn =

§
¨
©

0 for n f N ,
1

qn
for n > N .

This is a Cauchy sequence also, and we have

{qn}{rn} = {0, . . . , 0, 1, 1, . . .} = {1, 1, . . .} 2 {1, . . . , 1, 0, 0, . . .} .

If I were an ideal with M ¢ I properly, then I would contain a non-null

sequence {qn}. Since the sequence {1, . . . , 1, 0, 0, . . .} is null, the argu-

ment above with rn would imply that the constant sequence {1, 1, . . .}

must be contained in I, and so I would have to be equal to R. Thus, M

is a maximal ideal. The quotient field R/M is, by definition, the field of

p-adic numbers Qp.

An additional detail exhibits a fundamental difference between this

construction ofQp and the analogous construction of R as the completion

of Q in the Euclidean norm. Given a p-adic number α = {qn}+M , if the

Cauchy sequence {qn} is null, we set ||α||p = 0. Otherwise, there exist

a positive real number ε and an integer N such that ||qn||p > ε for any

n > N . We may choose N sufficiently large so that ||qn 2 qm||p < ε for

n,m > N also. Then, by the isosceles triangle property, we have that

||qn||p is constant for all n > N , and so we may define

||α||p = lim
n→∞

||qn||p ,

extending in this manner the p-adic norm on Q to a p-adic norm on Qp.

Using this extension, we may also extend the notion of p-adic order.

In the construction of R as the completion of Q in the Euclidean norm,

this said norm admits an extension to a norm on R as well. However, in

spite of the fact that their constructions derive from exactly the same

procedure, this and the p-adic norm above exhibit a substantial differ-

ence. For unlike the case of the Euclidean norm on R, the extended

� �p-norm on Qp still ranges over the set {0}* {pn}n∈Z, the same range

this norm function has over Q, whereas, for R, the range of the Euclidean

norm is R itself.
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