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FLUID DYNAMICS AND WAVES
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1

Elements of fluid dynamics

It is convenient to start with a brief summary of fluid dynamics fundamentals

in order to establish the mathematical notation and the physical concepts

that will be used throughout this book. We will first look at the kine-

matics of fluid flow, especially at how to capture the evolution of material

elements such as material points or lines.

This is followed by a description of perfect fluid dynamics, which is the

natural point of departure for the study of flows at very high Reynolds

numbers in the atmosphere and the ocean. In these flows the direct influence

of viscous forces is confined to boundary layers and to sparse pockets of

three-dimensional turbulence within the fluid.

The culmination of perfect fluid dynamics is Kelvin’s circulation theorem

and the various links of this theorem to vorticity dynamics. Indeed, as we

go on it will become increasingly clear that the circulation theorem is also

the key result in wave–mean interaction theory.

1.1 Flow kinematics

In continuum fluid mechanics the molecular structure of the fluid is ignored

and the description of the physical state of the fluid is accomplished by

specifying a finite number of flow fields as functions of position x and time t,

say. How many fields are needed depends on the complexity of the fluid under

consideration, but all fluid flows require a working mass and momentum

budget, which leads to the definitions of the density and velocity fields.

1.1.1 Mass, momentum and velocity

The mass density per unit volume ρ(x, t) ≥ 0 is defined such that

M =

∫

D

ρ dV (1.1)
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4 Elements of fluid dynamics

is the fluid mass contained in any region D, including the limiting case as D

shrinks to an infinitesimal region. The essential usage of ρ as an integrand

suggests that ρ(x, t) need not be very smooth; indeed, it certainly makes

sense to allow for discontinuity surfaces, say at the interface between two

fluids such as the interface between water and air, where the density jumps

by a factor of a thousand, or at internal jumps such as compressible shocks

in gas dynamics. Some fluids are mixtures that consist of several fluid species

sharing the same volume and then each species has its own mass density.

Examples occur in plasma physics, in superfluids, or even in the more famil-

iar situation of rain drops or ice particles embedded in moist air. However,

we will not consider mixtures in this book, so there will only be one fluid

mass density.

The momentum density defines the fluid velocity vector u(x, t) such that

∫

D

ρu dV (1.2)

is the fluid momentum contained in any region D, again including the in-

finitesimal limit. In other words, the fluid velocity at a point x is defined as

the ratio between momentum and mass as D shrinks to zero volume around

x. This is a basic statement of physics.

Another basic statement of physics is that mass is conserved, which means

thatM in (1.1) should be constant if the region D moves with the fluid. More

precisely, if we consider a region D whose points move with velocity v, say,

then it follows from calculus that

dM

dt
=

∫

D

∂ρ

∂t
dV +

∮

∂D

ρv · dA =

∫

D

(

∂ρ

∂t
+∇· (ρv)

)

dV (1.3)

where dA = ndA is the outward-pointing area element at the boundary ∂D

and the second form has been obtained by using the divergence theorem.

Now, the physical statement of mass conservation implies that (1.3) is zero

if v = u, in which case D is called a material volume and (1.3) is called the

continuity equation in integral form. For this to be true for any choice of D

it must be the case that

∂ρ

∂t
+∇· (ρu) = 0. (1.4)

This is the continuity equation in differential form. It is worth noting the

double role of ρu, which is both the momentum vector density and also the

mass flux vector.
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1.1 Flow kinematics 5

1.1.2 Material trajectories and derivatives

The integral curves of u are called material trajectories and they are given

by the vector-valued functions X(t) that solve the initial-value problem

t ∈ [0, T ] :
dX

dt
= u(X(t), t) and X(0) = X0 (1.5)

with some initial position X0. Thus, X(t) is the trajectory during the time

interval [0, T ] of the fluid particle1 that was at position X0 at time t = 0. It

is a working assumption in fluid dynamics that (1.5) is well posed for some

finite time of interest T > 0, which implies that during this time interval

material trajectories are unique and do not cross. Thus a fluid particle is

uniquely identified, or labelled, by its initial position X0. Now, using X(t)

we can evaluate any field φ(x, t) along the trajectory x = X(t) to obtain

the time evolution of φ as observed by following the particle. Specifically,

the chain rule yields

d

dt
φ(X(t), t) =

(

∂

∂t
+ u(X(t), t) ·∇

)

φ(X(t), t) (1.6)

for the rate of change of φ along the material trajectory. This shows how the

velocity field u defines a directional derivative following the fluid motion,

which is called the material derivative. Obviously, the material derivative

can also be expressed without reference to X(t) by

Dφ

Dt
≡

∂φ

∂t
+ (u ·∇)φ. (1.7)

This gives the rate of change per unit time of φ as observed by following the

fluid particle that is occupying the position x at time t. This is the most

important mathematical definition in fluid dynamics.

For smooth flows the continuity equation (1.4) can be re-written in the

equivalent form

Dρ

Dt
+ ρ∇·u = 0, (1.8)

which shows explicitly how the density following a particle evolves according

to the divergence of the velocity field. In the special case of incompressible

1 The concept of a ‘fluid particle’ here must not be confused with a fluid molecule or any other
form of atomic particle, which is necessarily part of the molecular structure that is ignored in
a continuum theory. Instead, the fluid particle here is a small region D surrounding a point x

such that the variations of u across D are negligible. Although D is small in this sense it still
contains very many atomic particles. This is a well-defined concept in smooth flows although
some care is needed in the presence of discontinuity surfaces.
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6 Elements of fluid dynamics

flow Dρ/Dt = 0 and we have the pair

Dρ

Dt
= 0 and ∇·u = 0. (1.9)

Incompressibility does not imply that ρ is spatially uniform, only that ρ is

constant along material trajectories. This is an example of material invari-

ance, which takes the form (1.9a) for scalar fields.

1.1.3 Lagrangian and Eulerian variables

In fluid kinematics there is a distinction between Eulerian variables that are

defined as functions of fixed position x and Lagrangian variables that are

defined relative to fixed fluid particles labelled by their initial positions X0,

say. For example, we can think of the mass density as a Eulerian variable

described by ρ(x, t) or as a Lagrangian variable described by a function of

the initial particle positions ρ(X0, t). Clearly, this choice affects the form

of the governing equations, for instance the material derivative takes the

alternative forms

Dρ

Dt
=

(

∂

∂t
+ (u ·∇)

)

ρ(x, t) =
∂

∂t
ρ(X0, t). (1.10)

Both descriptions are mathematically equivalent, but in practice (especially

in numerical computations) the use of Eulerian variables dominates. This is

because realistic fluid flows involve large, chaotic particle trajectories that

would render a mathematical description or numerical computation based

on exactly resolved trajectories infeasible after a very short time. This is

obvious from everyday experiences such as stirring milk in coffee, for exam-

ple. Nevertheless, Lagrangian variables have their conceptual merits because

they greatly simplify the description of material invariants. In addition, some

dynamical laws such as Kelvin’s circulation theorem can only be exploited

fully using Lagrangian concepts.

We will take the view that fluid dynamics is naturally a hybrid theory in

which both Eulerian and Lagrangian variables play a useful role in under-

standing and computation. This will also be our approach to wave–mean

interaction theory.

1.1.4 Evolution of material elements

The material derivative (1.7) extends naturally to infinitesimal material el-

ements such as points, lines, areas and volumes. The material derivative of
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1.1 Flow kinematics 7

a point is

Dx

Dt
= 0 + (u ·∇)x = u. (1.11)

Thus the material rate of change of position is given by the velocity. Two

neighbouring material points x and x + dx move with the respective

velocities u and u + du and therefore a material line element dx evolves

according to

D

Dt
(dx) = du = (dx ·∇)u. (1.12)

The evolution of the volume content of a material region follows from (1.3)

with ρ = 1 and v = u as

d

dt

∫

D

dV =

∫

D

∇·u dV ⇒
D

Dt
(dV ) = ∇·u dV. (1.13)

This shows that positive divergence corresponds to volume expansion. Com-

bining (1.13) and (1.8) we obtain the continuity equation in the form

D

Dt
(ρ dV ) = 0, (1.14)

i.e., the mass of a fluid particle is constant. This yields a useful general

formula for the rate of change of an integral over a material volume D,

namely

d

dt

∫

D

ρφ dV =

∫

D

D

Dt
(ρφ dV ) =

∫

D

ρ
Dφ

Dt
dV (1.15)

for any function φ. For example, this formula applies to the centre of mass

of a material volume:

d

dt

(

1

M

∫

D

ρx dV

)

=
1

M

∫

D

ρu dV. (1.16)

Thus the centre of mass moves with the total momentum.

Finally, the evolution of a material area element dA follows most easily

from dV = dx · dA and therefore

D

Dt
(dx · dA) =

D dx

Dt
· dA+ dx ·

D dA

Dt
= ∇·u dV. (1.17)

Substituting from (1.12) and demanding that the remaining equality holds

for arbitrary dx then implies

D

Dt
(dA) = (∇·u)dA− (∇u) · dA, (1.18)

where in the last term dA contracts with u and not with ∇. For example, in

the case of isotropic expansion with u = x the right-hand side is (n−1)dA,
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8 Elements of fluid dynamics

where n is the number of spatial dimensions. This situation is familiar from

inflating a balloon. In non-isotropic flow fields the last term captures the

tilting of dA by the strain field.

For completeness, we note that the gradient of a material invariant φ

evolves according to

Dφ

Dt
= 0 ⇒

D

Dt
(∇φ) = −(∇u) ·∇φ, (1.19)

where again ∇φ contracts with u and not with ∇. For incompressible flows

this is identical to the equation governing material area elements in (1.18).

Experience shows that it is easy to get the signs wrong between (1.12), (1.18)

and (1.19).

1.2 Perfect fluid dynamics

The equation of motion in a fluid follows from Newton’s law, which demands

that the time rate of change of momentum of a material body D, say, is equal

to the net force applied to the body. In a perfect fluid there are no viscous

forces and this leads to Euler’s equation. To close the set of equations we

require constitutive relations, which for an ideal gas brings in the entropy. In

perfect fluid flow there is no diabatic heating and therefore specific entropy

is a material invariant. This closes the set of equations for perfect fluid flow.

1.2.1 Euler’s equation

In a perfect fluid the only forces acting on the fluid are due to a potential

per unit mass Φ and a pressure p. By definition, the net force on D is then
∫

D

−ρ∇Φ dV −

∮

∂D

pdA. (1.20)

For example, in the case of the standard gravitational potential Φ = gz with

altitude z and constant gravity g the net potential force is downward and

equals the weight of the fluid in D. There is a qualitative difference between

these two kinds of forces: the potential force acts throughout the volume of

D whilst the pressure force acts only on its boundary ∂D. Newton’s law in

integral form is

d

dt

∫

D

ρu dV =

∫

D

(−ρ∇Φ−∇p) dV (1.21)

and its differential form is Euler’s equation for a perfect fluid:

Du

Dt
+

∇p

ρ
= −∇Φ. (1.22)
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1.2 Perfect fluid dynamics 9

The division by ρ is convenient for vorticity dynamics. The appropriate

boundary conditions for u at a fixed wall are that the normal component

of u vanishes at the boundary. However, the tangential velocity components

are not constrained in a perfect fluid.

1.2.2 Constitutive relations

We consider Φ as given and then in n spatial dimensions the continuity

and Euler equations provide 1 + n equations for the 2 + n fields (ρ, p,u).

Thus we need a relation that links ρ and p, which is usually derived from

thermodynamics under the assumption of local thermodynamic equilibrium.

However, in the case of incompressible flow this additional equation is simply

∇·u = 0. In fact, this case is special because taking the divergence of

(1.22) then leads to an elliptic equation for the pressure. This is a diagnostic

equation, i.e., an equation without a time derivative, which makes clear that

for incompressible flow the pressure is not an independent field, but can be

computed, albeit non-locally, from the other flow fields.

Another important class of fluid models is that a of barotropic fluid, in

which there is a non-degenerate functional relationship between density and

pressure. This simple fluid model allows for compressible effects, and we will

use it frequently in this book. The assumed functional relationship implies

that the pressure force is irrotational in a barotropic fluid, i.e.,

∇×

(

∇p

ρ

)

= ∇

(

1

ρ

)

×∇p = 0. (1.23)

For fluids such as an ideal gas there is a functional relationship between

density, pressure, and one more state variable s, which is the entropy den-

sity per unit mass. In a perfect fluid there is no diabatic heating due to

irreversible processes or radiation effects and therefore entropy is materially

invariant in smooth flow regions:

Ds

Dt
= 0. (1.24)

However, the entropy increases if fluid particles pass through a shock, as

is well known in gas dynamics. The barotropic fluid can be viewed as a

special case of an ideal gas in which s is spatially uniform; this is also

called a homentropic fluid. So, in perfect smooth flow the continuity and

Euler equations together with (1.24) and the functional relationship between

(ρ, p, s) form a complete system for 3+n flow fields. This will be sufficient for

the purposes of this book, but we note that more complex fluid models may

require further thermodynamics fields, such as a humidity variable for moist
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10 Elements of fluid dynamics

air, or they may include deviations from the thermodynamic relationships

derived under the assumption of local thermodynamic equilibrium.

Finally, even for an ideal gas it is often useful to define some further

thermodynamic flow fields, such as the temperature T , which are then linked

to (ρ, p) via additional relations such as the ideal gas law and so on. For us

it proves convenient to introduce the internal energy per unit mass, which

is a function ǫ(ρ, s) defined by the first law of thermodynamics:

dǫ = T ds−pd

(

1

ρ

)

= T ds+
p

ρ2
dρ ⇔

∂ǫ

∂ρ
=

p

ρ2
and

∂ǫ

∂s
= T. (1.25)

This internal energy quantifies the change of elastic energy due to com-

pression or dilation of fluid particles, which will be needed to formulate the

energy conservation law in §1.3. Another useful field is the enthalpy per unit

mass defined by

P = ǫ+
p

ρ
. (1.26)

The enthalpy is useful because its differential is

dP = dǫ+
dp

ρ
−

p

ρ2
dρ =

dp

ρ
+ T ds, (1.27)

which implies that Euler’s equation can be re-written as

Du

Dt
+∇Φ = −

∇p

ρ
= −∇P + T∇s. (1.28)

For barotropic flows the terms involving the entropy s in (1.27) and (1.28)

are absent and thus in this case the pressure force is irrotational.

1.2.3 The polytropic fluid model

The polytropic fluid model is a special case of a barotropic fluid with a power

law dependence of pressure on density, i.e., p ∝ ργ for some constant γ. For

example, in the case of homentropic flow of an ideal gas γ would be the usual

ratio of specific heats. Also, this model includes the standard shallow-water

equations if γ = 2 and ρ is identified with the layer depth as a function of

horizontal coordinates (cf. §1.6 below). We will use this model frequently in

this book and therefore we summarize its mechanical structure here.

We write the pressure as

p(ρ) =
ρ0c

2
0

γ

(

ρ

ρ0

)γ

(1.29)

where ρ0 is a reference density and c0 is the linear sound speed for pertur-

bations around ρ = ρ0. This is consistent with the nonlinear definition of
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1.3 Conservation laws and energy 11

the sound speed as c2 = ∂p/∂ρ where the derivative is taken at constant en-

tropy s. The advantage of writing the polytropic pressure in the form (1.29)

is that it keeps separate the effects of varying γ and of varying the linear

sound speed, which is instructive in applications.

The corresponding specific internal energy ǫ(ρ) is

ǫ(ρ) =
c20

γ(γ − 1)

(

ρ

ρ0

)γ−1

(1.30)

and the specific enthalpy is

P =
c20

γ − 1

(

ρ

ρ0

)γ−1

= γǫ. (1.31)

The governing momentum equation is then given by (1.28) without the ∇s

term.

1.3 Conservation laws and energy

The continuity equation (1.4) is an example of a local conservation law ,

which expresses the conservation of mass with the scalar density ρ and the

flux vector ρu. In this special case the flux is purely advective, i.e., the flux

equals the density times the velocity. Using (1.4), Euler’s equation (1.22)

can also be written in conservation form for the momentum, namely

∂(ρu)

∂t
+∇· (ρuu+ pδ) = −ρ∇Φ (1.32)

where δ is the unit tensor. Thus, in the absence of the potential force (1.32) is

a conservation law for the momentum vector with density ρu and flux tensor

ρuu+ pδ. In this case the advective momentum flux ρuu is augmented by

the non-advective momentum flux pδ due to the pressure. The useful identity

ρ
Dφ

Dt
=

∂(ρφ)

∂t
+∇· (ρφu) (1.33)

makes clear that any local conservation law with non-advective flux F , say,

can be written in the two equivalent forms

Dφ

Dt
+

1

ρ
∇·F = 0 or

∂(ρφ)

∂t
+∇· (ρφu+ F ) = 0. (1.34)

For φ = 1 and φ = u this yields the two forms of the mass and momentum

conservation laws, respectively.
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