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PREFACE.

THESE two volumes, now published as Part IV of
the present work, are my final contribution towards the
fulfilment of a promise made twenty-one years ago. They
are devoted to the theory of partial differential equations.

Though the work thus is completed, no claim is made
that every topic of importance has been discussed. In
the earlier volumes, indications of omissions from other
portions of the whole subject were given and need not
now be repeated: here also, there have been definite
omissions. Nothing, for instance, is said concerning the
researches of Picard and Dini on the method of successive
approximations for the construction of an integral which
obeys assigned conditions; these investigations limit the
variables to real values, and throughout the treatise I
have dealt with variables having complex values. Formal
questions, such as those which arise out of the appli-
cation of the theory of groups, are hardly mentioned ;
here, as in the preceding volumes, I have concerned
myself with organic properties, given by applications
of the theory of functions, rather than with formal
properties. Again, the subject of boundary problems
is not dealt with; it appears to me to belong to the
theory of functions in its applications to mathematical
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vi PREFACE

physics rather than to the theory of differential equa-
tions. In the branches of the subject that are discussed,
I have tried to deal as completely as possible with what
seems to me to be essential : and I have omitted what
are purely formal extensions, to equations of general
order, of the properties of equations of the second order
when such extensions contain no intrinsic novelty.

In the preparation of the volumes, I have consulted
the works of many writers; and references are freely
given. My aim has been to make these references relate
to the main issues; not a few results, extracted from
memoirs, have been used to construct examples ; and the
name of the author is (I hope) given in every such case.
But I have not attempted to select and arrange the
references, so that they might make the framework of a
history of the subject; had the latter been my purpose,
names such as Lagrange, Cauchy, Jacobi, whose work
is now the common possession of all writers, would have
received more frequent specific references in my pages. It
will be seen that Darboux’s treatise, Théorie générale des
surfaces, and Goursat’s three volumes, Legons sur l'in-
tégration des équations aux dérwées partielles, have been
frequently quoted : I wish to make also a comprehensive
acknowledgement of my indebtedness to those works.

The earlier of the two volumes is devoted mainly
to equations of the first order. The theory of these
equations may be regarded as almost complete, because
the actual integration of the equations is made to depend
solely upon the solution of difficulties which occur in
connection with a system of ordinary equations of the
first order.
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PREFACE vii

An introduction to the subject is provided by
Cauchy’s existence-theorem ; it is discussed in the first
two chapters. The next chapter is specially concerned
with linear equations and linear systems; these admit
of a separate and special mode of treatment. The fourth
chapter gives an exposition of what, on the whole, I
regard as the most effective method of integration for
non-linear equations : it contains what is usually called
Jacobi's second method, with Mayer’s developments. In
the succeeding chapter will be found Lagrange’s classifi-
cation of integrals, based upon the process of variation
of parameters: but something still remains to be done in
this branch of the subject, because even simple examples
shew that the customary classes may fail to be entirely
comprehensive. The next three chapters are devoted to
Cauchy’s method of characteristics, alike for two and
for any number of independent variables, and to the
geometrical associations in the case of two independent
variables. Then follows a chapter dealing with Lie’s
methods, based upon contact-transformations and upon
the properties of groups of functions: it was possible
to abbreviate this chapter, because Pfaff’s problem had
already been discussed in the first volume of this work.
A chapter has been added dealing with the equations
of theoretical dynamics, partly because of their intrinsic
connection with partial equations, yet mainly in order
to shew the origin of what is usually called Jacobi’s
first method of integration of partial equations. The
concluding chapter of this volume discusses those simul-
taneous equations of the first order, involving more than
one dependent variable, which can be integrated by
operations of the same class as those in any of the
methods mentioned.
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viii PREFACE

The later of these two volumes is devoted to the
consideration of partial equations of the second order
and of higher orders, mainly (though not entirely) in-
volving two independent variables. A perusal of the
volume will shew that, outside the limits of Cauchy’s
existence-theorem, knowledge is fragmentary: the in-
version of operations of the second order has not yet
been discovered and, accordingly, any effective process
consists of a succession of operations of the first order.

After a chapter devoted to the discussion of questions
connected with the existence of integrals and, in parti-
cular, to the discussion of the constitution of a general
integral, two chapters are occupied with Laplace’s method
(and with its developments, due to Darboux) for the
integration of the homogeneous linear equations of the
second order: the effective success of the method de-
pends upon the vanishing of some invariant, in one or
other of two progressively constructed sets of functions
involving the coeflicients of the original equation. The
result raises the question of the form of equations, the
primitive of which can be expressed in finite terms: and,
to this matter, one chapter is assigned.

In the attempt to integrate any equation of the second
order, it is natural to enquire whether an equation of the
first order exists which is its complete equivalent: and
equations, characterised by this property, will obviously
constitute a distinet class. Such, indeed, were the equa-
tions of the second order for which integrals (now called
intermediate) were first obtained; and one method of
their construction is due to Monge. Later, another (and
a more direct) method for their construction was given
by Boole: but both methods assume that a special form
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PREFACE X

attaches to the intermediate integral, and the assumption
demands that a very restricted form shall be possessed
by the original equation. Basing his argument entirely
upon an assumed type of integral, Ampere devised an-
other process of integration: his method makes no
demand for the existence of an intermediate integral:
and the result is often effective when no such integral
exists. All these three methods, (and another method
of some generality, as given), require the construction
of integrable combinations of one (and ultimately the
same) set of subsidiary equations, when they are applied
to the same original equation. But Ampeére’s method is
applicable also to equations of less restricted form.

It may, however, happen that an equation of the
second order is not of the restricted form or, being of
that form, does not possess an intermediate integral, or
is not amenable to Ampere’s method. In that case, a
method due to Darboux may be applicable, whereby a
compatible equation of the second order (or of some
higher order) can be constructed; provided only that
a compatible equation of finite order can be obtained, a
primitive of the original equation can be derived. To
these matters, three chapters are given: they explain
the working processes that are effective for the deter-
mination of an integral in finite terms, whether by a
single equation or a set of equations.

One chapter is devoted to the generalisation of
integrals which involve some arbitrary parameters, and
another to the discussion of characteristics of equations
of the second order. The investigations in both of these
chapters are clearly incomplete : they could be continued
along lines that lead to the complete classification of
integrals of equations of the first order.

ad
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X PREFACE

In the theory of equations of the first order, much
information is given by Lie’s general theory of contact-
transformations : and an obvious investigation is thereby
suggested as to whether there is a corresponding theory
for equations of order higher than the first. The question
has been considered, and partly solved, by Bicklund and
others: one chapter gives an outline of their work:
it is clear that much yet remains to be done in this
subject.

In the last three chapters of the volume, some of
the preceding methods and theories are extended to
equations, which are of order higher than the second
or which involve more than two independent variables.
Only the simplest extensions are discussed : they could
be amplified to any extent: but the result would be
merely an accumulation of formal theorems possessing
neither individuality nor intrinsic value.

From this brief sketch of the contents of these
two volumes, it will be manifest that, in the theory
of equations of order higher than the first, there are
many gaps and that the theory is far from complete :
and even a summary perusal of the volumes will give
some indication of these gaps. It is my intention to
point out, in a presidential address which will be
delivered to the London Mathematical Society next
month, some of the more obvious and practicable
questions which are waiting for solution. Of these,
there is no lack: it is only the workers who are
wanted.
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PREFACE x1

On not a few occasions, it has been my privilege to
acknowledge the help which has been given to me by
the Staff of the University Press. Once more, an oppor-
tunity comes to me: and I gladly seize it, to express
my indebtedness to them all for the care, the attention,
and the consideration, by which they have lightened
what to me is never an easy or a simple duty.

So I pass from a task, which has filled the greater
part of many years of my life, which has broadened in
my view as they passed, and which has suffered inter-
ruptions that threatened to end it before its completion.
Many of its defects are known to me: after it has gone
from me, others will become apparent. Nevertheless, my
hope is that my work will ease the labour of those who,
coming after me, may desire to possess a systematic
account of this branch of pure mathematics.

A. R. FORSYTH.

TRrINITY COLLEGE, CAMBRIDGE.
October, 1906.
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